
An Architecture for Structured, Concurrent, Real-Time Action

by

Leon Rubin Barrett

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Jerome A. Feldman, Chair
Professor Dan Klein

Professor Thomas L. Griffiths
Professor Srini Narayanan

Spring 2010

An Architecture for Structured, Concurrent, Real-Time Action

Copyright 2010

by

Leon Rubin Barrett

1

Abstract

An Architecture for Structured, Concurrent, Real-Time Action

by

Leon Rubin Barrett

Doctor of Philosophy in Computer Science

University of California, Berkeley

Jerome A. Feldman, Chair

I present a computational architecture designed to capture certain properties essential

to actions, including compositionality, concurrency, quick reactions, and resilience in the face

of unexpected events. It uses a structured internal state model and complex inference about

the environment to inform decision-making. The properties above are achieved by combining

interacting procedural and probabilistic representations, so that the structure of actions is captured

by Petri Nets, which are informed by, and affect, a model of the world represented as a Probabilistic

Relational Model. I give both a theoretical analysis of the architecture and a demonstration of its

use in a simulated robotic environment.

i

For my mother, who loved science and art, learning and doing, and above all, growth and

life.

ii

Contents

1 Introduction 1
1.1 Representation Components . 2

1.1.1 Bayes Nets . 2
1.1.2 Petri Nets . 3
1.1.3 Combination . 4

1.2 Background . 4
1.3 Coordinated Probabilistic Relational Models . 8
1.4 Example Domain: RoboCup . 9

1.4.1 Simulator Detail . 10
1.5 What to Expect in this Document . 12

2 Representation of Action 14
2.1 Conceptualization . 14
2.2 Procedural Behavior . 16

2.2.1 Petri Nets . 16
2.2.2 Time . 18
2.2.3 Control . 19
2.2.4 Input and Output . 19
2.2.5 Continuous Quantities and Mathematical Transformations 21
2.2.6 Modules . 24
2.2.7 Demonstration: a RoboCup Behavior . 26

2.3 Inferential Reasoning . 30
2.3.1 Bayesian Networks . 31
2.3.2 Bayesian Inference . 35
2.3.3 Temporal Inference . 37
2.3.4 Objects . 38
2.3.5 Demonstration: A RoboCup Goalie . 43

2.4 Review . 48

3 Analysis and Proofs 50
3.1 Analyzing Higher-Level Behaviors . 52
3.2 Markov Model Analysis . 53

3.2.1 Complexity and Subdivision . 56
3.2.2 Bounded Markov Process Analysis . 57
3.2.3 Discrete Inference State . 58

iii

3.3 Sampling Analysis . 59
3.3.1 Backward Sampling . 60

3.4 Hand-Wrought Analysis . 61

4 Recovering from Surprises and Interruptions 62
4.1 Machinery . 63
4.2 Modules . 64
4.3 Examples . 66

4.3.1 Passing the Ball . 67
4.3.2 Advancing down the Field . 68
4.3.3 Keeping Watch on the Ball . 69

5 Results 71
5.1 Implementation . 72
5.2 Demonstration . 73
5.3 Baseline Comparisons . 74

5.3.1 Finite State Machine Baseline . 74
5.3.2 Bayesian Network Baseline . 75
5.3.3 Concurrent Turing-Complete Language Baseline 77

6 Conclusion 79
6.1 Future Work . 82

6.1.1 Reasoning and Planning . 82
6.1.2 Learning . 82
6.1.3 Improved Inference Flexibility . 83
6.1.4 Language . 83
6.1.5 Modeling Internal State of Another Agent 84

6.2 Conclusion . 84

Bibliography 85

A Hand-Wrought Analysis 92
A.1 Proving Bounds: Behavior . 94
A.2 Proving Bounds: Bounds . 94
A.3 Proving Bounds: Lemmas . 95
A.4 Proving Bounds: θ . 98
A.5 Proving Bounds: d and s . 100
A.6 Proving Bounds: s . 101
A.7 Proving Bounds: Convergence . 102
A.8 Proving Bounds: Conclusion . 103

iv

Acknowledgments

A great many people made my work possible and my life easier. First and foremost,

Jerry Feldman and Srini Narayanan guided me through the maze of artificial intelligence research.

They pointed out the paths of others before me and the directions where effort would be rewarded,

saving me from disorientation and distraction. Without their knowledge and attention, I would

have been quite lost. The rest of my committee has also been invaluable: working with Dan Klein

gave me a wonderful opportunity to explore the data-driven world of statistical natural language

processing, and I am grateful to Tom Griffiths for his particularly insightful comments as I drafted

this document.

I have had the opportunity to work with many clever colleagues during my time here.

I would particularly like to thank those with whom I have done joint research, namely Alberto

Amengual, Slav Petrov, Romain Thibeaux, and Liam Mac Dermed. Also, the fellow students in

my research group have provided key feedback that nudged my thoughts in interesting directions.

Their numbers include Johno Bryant, Joe Makin, Nancy Chang, Steve Sinha, and Eva Mok.

I would like to acknowledge the undergraduate research assistants who have both written

much of the code that realizes my designs and helped create the behaviors that rely on these tools.

Andres Bonilla integrated the ATAN tool to make my software talk easily to the soccer simulator.

Daniel Duckworth helped with RoboCup localization. Eric Hernandez aided in the localization,

coded good support for observations, and helped design behaviors. Matthew Ekstrand-Abeug

coded the essentials of math function support in the Petri net and provided substantial assistance

in the creation of soccer behaviors.

My family, too, has earned my deepest gratitude: my father, who introduced me to the

fun of computers; my brother and sister, who kept me challenged; and of course my mother, who

showed me how to prioritize my work and still maintain a personal life. Also inspiring have been

those muses who helped fill the non-research parts of my life: Kate, Megan, Caely, Todd, Cheryl,

Alex, Ben, Juliet, Zach, Louis, Elena, Moorea, and more.

Finally, I proclaim my appreciation of my guinea pigs, who played the part of motivating

examples whenever needed in a paper and provided boundless amounts of adorability at all times.

Louis, Milo, and Chester, your contributions will live on.

1

Chapter 1

Introduction

The field of Artificial Intelligence often neglects two important issues: understanding the

world works best when it is geared toward producing actions; and actions possess a great deal of

structure. Consider humans: we are primarily environment-manipulating creatures, and we have

good mental models for only the components we deal with. We tend to completely ignore aspects

of the world that do not concern us, so we need not spend a lot of effort parsing and understanding

them. (For instance, you probably have no idea how many times your shoelaces cross, even though

you tighten them up every time you tie your shoes.) Similarly, we avoid rethinking our actions

every time we perform them because we develop regular routines to exploit regularities, and we

then use these routines as composable building blocks to make complex actions. (You would

probably have to act out tying your shoes to figure out exactly what finger motions you make.)

We thus neglect not only irrelevant stimuli but also irrelevant options and affordances. This use

of routines streamlines both models and actions, keeping inference and planning from bogging

down in irrelevancies. After all, knowing how you tie your shoes, and precisely what they look

like, is not nearly so useful as just putting them on. Computerized methods for acting upon

and understanding the world, then, will also benefit from taking advantage of these simplifying

opportunities.

Continuing our example, think through the whole process of donning a pair of shoes. This

action requires a number of components: for each shoe, slipping on the shoe, tightening the lace,

and tying the lace. Each of these components can be further broken down into sub-components,

eventually reaching some sort of “atomic actions,” the smallest twitches a muscle can produce.

Despite requiring structure, this action cannot be completely memorized, since the environment

may be noticeably different each time (e.g. laces in different positions, laces slick with water,

etc.). Furthermore, this sort of interaction with the world requires real-time responses to inferred

1.1. REPRESENTATION COMPONENTS 2

changes in the world, so that, for instance, we can recognize a sudden looseness as the sign of a

slipped knot and respond appropriately.

This is precisely the sort of task that computers and robots find impossibly difficult. It

cannot be scripted like an assembly job, or navigated with SLAM. The number of components

makes reinforcement learning hard, and planning fails when it comes time to actually grasp a

flexible shoelace. However, this is a simple procedure that humans master in less time than most

Ph.D. careers take.

I propose that the difficulty in this task requires a way of dealing with the problems

of action representation. After all, data representation is central to anything computers do. In

order to use any algorithm or pore through any data, you must first design a data structure that

matches the inherent structure of the data. Only then will algorithms be efficient, able to focus on

the important relations in the data and ignore the chaff. The same need is present in the domain

of producing actions.

In this dissertation, I describe a data structure and complementary set of algorithms that

are focused on producing and understanding actions. This includes a procedural, compositional

description focused on the intricate structural properties of actions, which is coupled to a proba-

bilistic, inference-oriented model of the world. This compound model uses the strengths of both

components to extend their reach into the complex realm of real-world action. Also, by focusing on

the production of actions, this will lead our world models to be minimal—just enough to allow the

agent to make useful actions. The result is an action framework that is quite capable of describing

complex actions.

1.1 Representation Components

I combine two models in such a way as to enjoy their strengths and overcome their

weaknesses. On the one hand, Bayes nets are an admirable model of the world, but they lack a

structured action model. On the other hand, Petri nets (a sort of procedural model) can easily

describe coordinated actions, but they do not easily represent the world. A sensible combination

is to join Bayes nets with Petri nets. I will now explain in detail why this particular combination

of formalisms is appropriate to represent real-world actions.

1.1.1 Bayes Nets

In the past few decades, Bayesian networks have become the standard representation for

probabilistic and causal information [59]. In a Bayesian network, random variables are represented

1.1. REPRESENTATION COMPONENTS 3

as nodes, and dependencies between them are represented as directed links, so that the structure of

a domain with randomness is depicted as a graph. Then, by also giving conditional distributions

that say how the related variables affect each other, these graphical models can give detailed

information about the total probability distribution, and probabilities about a single variable given

other information may be extracted via inference. These models are described in more detail in

§2.3.1.

By virtue of being graphical, the structure that Bayesian networks describe is easy for

humans to understand. Also, because of their carefully-analyzed underlying mathematics, they are

easy to manipulate via computational means. It is clear why these advantages make Bayes nets

the standard representation and why I have chosen to use them. However, I use not mere Bayes

nets, but the object-oriented extension, called Probabilistic Relational Models, which I describe

more in §2.3.4. Thus, the world model used in this thesis consists of random variables attached

to objects, and the objects may have various relationships, which affect the dependencies of the

random variables. Based on these dependencies and on observed variables, it is possible to infer

likely values for hidden variables in the world.

1.1.2 Petri Nets

The most basic procedural representation, the Finite State Machine (FSM), is simple,

commonly used, and well understood; why not select it? The problem with FSMs is that they

do not easily represent concurrent events. We wish to represent a world with several different

components, each changing somewhat independently, but we must represent a single world state,

which therefore grows exponentially. In a sense, all of computer science can be seen as a way to

separate different sorts of states into independently analyzable chunks. So, we need a representation

that inherently represents concurrent activity.

At the opposite extreme of representational complexity lies actual computer code. It is

extremely flexible, and can easily separate world state into many different variables, while also

representing concurrent execution of different tasks. The problem with such a powerful represen-

tation is that it is extremely complex and can vastly over-represent action. Analyzing complex

representations becomes prohibitive or impossible; in fact, it is undecidable to determine whether

an arbitrary program will eventually terminate. So, we would prefer to choose as simple a repre-

sentation as possible,

Petri nets are essentially like concurrent FSMs [63]. They have markings in multiple

places at once, and expand arcs by adding transitions to manage the coordination of those

multiple markings. (They are described further in §2.2.1.) The result is that Petri nets lie in the

1.2. BACKGROUND 4

pleasant middle ground between the extremes of FSMs and computer code. They are inherently

concurrent and split world state into weakly-interacting clusters. At the same time, some simple

conditions allow Petri nets to be far more analyzable than computer code. Indeed, Petri nets have

a long history of analysis, and there are standard algorithms for determining state reachability,

deadlock, reversibility, coverability, and so on [58]. Therefore, Petri nets are an eminently suitable

procedural representation for action.

1.1.3 Combination

Though these two separate tools have complementary features, it is not entirely obvious

how they best fit together. Nor are they useful for our purposes entirely unaltered. Thus, in

Chapter 2, we see the full details on how they can be extended and interfaced to produce a good

representation of action.

1.2 Background

In order to completely understand the work presented here, it is useful to see how it fits

into contemporary research in the general area. Here, I will attempt to present the shape of such

other, related work.

• Planning

Researchers have long tried to tease useful real-world activities out of computers and robots.

Some of the first approaches were the most direct, and the most notable of these is plan-

ning [64, 26]. In planning, the world is described as a logical statement, with another logical

statement as the goal state of the world. Similarly, every possible simple, atomic action is

listed, along with the preconditions that must be true for it to be possible and the postcon-

ditions that will be true after it has been performed. Then, a search is made through the

sequences of atomic actions to find a path from the source to the goal; once it is done, the

robot executes this sequence. Unfortunately, this is most useful with actions that include

very little uncertainty, such as package routing or airplane usage optimization. However, for

real-world activities, this front-loaded decision-making can bog down an agent.

• Hierarchical planning

Planning has been extended in a hierarchical fashion [52, 73, 74, 16]. The agent, rather

than coming up with a sequence of atomic actions, instead finds a sequence of high-level

1.2. BACKGROUND 5

actions. Then, it breaks this high-level action down into lower-level actions, with just the

same planning method. By doing this recursively, it eventually develops a full sequence of

atomic actions that achieves the goal. However, because the search space at every level is

smaller, and because later activities need not be fully planned-out until they are needed,

such a hierarchical plan can be created and used much more efficiently.

• Reinforcement learning / MDP

Another general framework for describing agents acting in a complex world is the Markov

Decision Process (MDP). Here, the world has a state that randomly changes in discrete time,

with each time step depending only upon the last state of the world and the agent’s action

(i.e. it has the Markov property). The agent gets scalar rewards from the environment,

and it wants to figure out a policy that will show it how to act at every time step so as to

maximize its expected reward. The process of solving an MDP is known as reinforcement

learning [68, 41]. This is a well-explored field, with many extensions. For instance, one that

I myself have worked on was to consider the case where the agent gets a vector of rewards;

even then, reinforcement learning can find all possibly optimal policies [7].

Unfortunately, reinforcement learning has a few major flaws for creating and describing com-

plex actions in the real world. First of all, it learns policies as preferences for actions in every

possible state (or, equivalently, as values of actions in every possible state). While ultimately

this will approach optimality, the description of these preferences is often overwhelming in

real-world environments, largely because it fails to take advantage of the many regularities

found in the real world, where useful actions are often sequential or procedural, and optimal-

ity is not always essential. Also, reinforcement learning does not deal well with unobserved

components of the environment, or with concurrent tasks. Thus, it is not highly effective at

the sort of real-world actions that draw my attention.

• Hierarchical RL

Just like planning, reinforcement learning can be extended with a hierarchy of increasingly

complex actions. Again, the goal is to select policies at each level that are optimal (given

the level they work at) and achieve the goal of obtaining as much reward as possible. Then,

because the improved structure allows for simpler search, policies can be found for much more

complex problems. Much of that work treats the structure as given by a human designer

[49, 71, 50], while some actually attempts to learn that structure automatically [35, 36]. Not

all of it works on concurrent actions, but notably [49] does. In principle, those methods could

1.2. BACKGROUND 6

give an interesting starting point for learning behaviors such as described in this dissertation.

• POMDPs

Since the MDP framework assumes that the agent observes the entire environment, it is

unrealistic, so it has been expanded with the Partially Observable Markov Decision Process

(POMDP) [42, 34]. Again, the world is described with a state that randomly changes in

discrete time, with each time step depending only on the last step (i.e. it has the Markov

property). However, the state is factored, and only some of the factors are observable by

the agent. Then, the agent, whether or not it knows the probability distributions for the

factors, or how they are connected, or even how many factors there are, must attempt to act

optimally. This world description is used for a number of related tasks, including attempting

to discover the hidden state factors and relations of the world, and also to achieve optimal

control either knowing or guessing a model of the world. True optimal control, given the

world model, is achieved by finding the maximum over hyperplanes, where each hyperplane

is a value of the world under some uncertainty over what its exact state is.

• POMDP FSM learning

One sub-field of POMDP research involves making procedural controllers that solve POMDPs.

These controllers take the form of Finite State Machines with a fixed number of states, and

it is possible to find the best n-state FSM that to solve a given POMDP. This can be done in

various ways, including gradient ascent over Markov chains [54], stochastic gradient ascent

[55], and direct search over policies [32]. It is a clever way to produce behaviors with internal

state, as described in this dissertation; however, it does not produce controllers that take

advantage of inference directly, and it is not clear how to extend it to handle concurrent,

weakly-coupled environment components and tasks.

• Petri net synthesis

It is also possible to synthesize Petri nets from given state graphs. If we know a Finite State

Machine with labelled arcs, we can find an equivalent Petri net with transitions having those

labels. That is, we can factor a given FSM into a Petri net, essentially by finding regions

with matching arc labels and creating a place to describe each such region [22, 13].

• Subsumption architecture

Another related method is known as the subsumption architecture, pioneered by Rodney

Brooks [11, 12]. Its core idea is that robots should be made to produce reactions without

1.2. BACKGROUND 7

worrying a lot about creating an internal representation of the world. Actions are instead

produced by a stateful, reactive system. The agent contains a number of such modules,

interacting together, and together they produce the agent’s behavior. Each subsystem is a

Finite State Machine designed to accomplish a particular goal, and the system is debugged

after each is added in turn.

That clearly shows some similarities to the method described here. After all, both are

focused on using reactive, stateful, concurrent modules that can respond quickly. However,

the subsumption architecture uses FSMs, which do not factor or handle concurrency very well.

Also, this work deliberately ignores the possible advantages of representing the environment,

which, while sometimes an unnecessary trap into which researchers can fall, can be critical

to producing appropriate responses to noisy inputs.

• Pengi

Agre and Chapman also worried that planning was too unwieldy to be effective in fast-acting

situations, such as the video game Pengo. Instead, they designed a reactive system that

behaved appropriately without using a world model [2]. This rule-based system attached

labels to objects in the world, and these were then used to choose actions. However, it was

not truly without a world model; instead, the world was assumed to be fully observed, so

it was not necessary to track the world state through time. The result was a system with

similar goals and concepts, but by working in a simpler environment, it neglected much of

the complexity that I tackle here.

• Action metaphor

Unsurprisingly, there is related work from my own advisors. In particular, Srini Narayanan

studied how computers could model the complex ways humans use metaphors about actions.

He used a Petri net to model the concurrent structure of a behavior, which was linked

via a metaphor map to a dynamic Bayes net that represented some other domain. This

allowed him to take a parsed sentence, simulate the action described, and transfer the result

through the metaphor map to the target domain [60]. This provided interesting and effective

understanding of linguistic metaphors. However, because his behavior model was never

required to actually take real inputs or produce real outputs, it was not finely detailed

enough to do more than just describe the general structure of an action. That said, much of

the system I describe here is inspired by his work.

1.3. COORDINATED PROBABILISTIC RELATIONAL MODELS 8

Coordination

Fa
ct
or
iz
at
io
n

MM

RMM

DPRM

DBN/HMMBN

PRM

CBN

SPN

CSPN

CPRM

Re
lat
ion
s

Figure 1.1: The meta-structure of probabilistic models on three different axes.

1.3 Coordinated Probabilistic Relational Models

There is another perspective that can be taken on the representation used here. I have

said some related work, and described its features, but we can also envision how it and a number

of related tools fit together with features on three axes. First, the full state of the world can be

split into different, partially dependent chunks; we call this factorization. Second, the world

has a temporal structure, which can be modeled coarsely or, in some cases, with finely structured

concurrency and synchronization; this is called coordination. Finally, a model can use relations

to describe the dependencies between chunks.

Of course, there are other dimensions by which we could categorize models, such as

stochasticity and discreteness. However, we will focus on the three above axes, and simply take

for granted the other axes, such as the stochasticity of our models and the models’ flexibility with

respect to discreteness. These three axes then comprise a 3D space, in which simpler models

lie closer to the origin. Many combinations of these three features have been explored, and in

Figure 1.1, we see the relationships between models with these different structures.

These three axes then make up a 3D space, where simpler models are closer to the

origin. Many combinations of these three features have been explored. In Figure 1.1, we see the

relationships between models with these different structures.

The simplest model of all is one consisting of a single world state, a single random variable.

If we add factorization to this starting point, we get the Bayes net, which has several possibly-

dependent state components [62]. If we add coordination to the start, we end up with a Markov

model, where a single state evolves over time [10]. Of course, we can also combine these, and

1.4. EXAMPLE DOMAIN: ROBOCUP 9

obtain the dynamic Bayes net, with its many variables changing through time [59].

We can also add the third axis, relations, to any of those models. The relational form

of the Bayes net is the Probabilistic Relational Model, where the state variables are lumped into

“objects,” which might be related [46]; these relations define dependencies between the variables of

different objects. Similarly, a relational DBN is a dynamic PRM [65], which is a PRM with explicit

temporal dependencies. The strangest is the relational Markov Model (RMM), which introduces

relations not between variables (since there is only one state variable), but between the possible

values of its state [5].

Each of the temporal models so far mentioned can still become more coordinated. As they

are so far, they capture only the crudest sorts of temporal information: dependencies. Temporal

processes in the real world can do such simple things, and operate dependently or concurrently,

but in practice, most such processes interact in more interesting ways. They involve various parts

that evolve sometimes alone, and sometimes in a coordinated way with other processes. They may

produce resources that other processes use, or progress only when other processes are in certain

states. Thus, the coordination axis continues further to the right, where we see models that capture

some of these additional features. Models here are often based upon Stochastic Petri Nets, which

extend Markov models by allowing such coordination within the evolution of the state [31]. They

can be combined with Bayes nets to produce coordinated Bayes nets [61], or they can have tokens

of various types, producing relational SPNs.

The model I present here combines the most complex parts of each axis. It allows the

description, analysis, and modeling of related, factored, coordinated temporal processes. It can be

seen in two ways: either it uses a Petri net to coordinate a Probabilistic Relational model, or it

uses a PRM to add temporal, factored relationships to a Petri net, as described below. Because

it is a coordinated form of a PRM, we may call it a CPRM. This representation is not the only

possible structure that could lie on this vertex of the box in Figure 1.1, but it is interesting because

of the way it extends existing representations into that space.

1.4 Example Domain: RoboCup

In order to show the usefulness of the representation I define, I apply it to a real task.

I use the simulated RoboCup environment, in which simulated robots play soccer [43]. This is

a commonly-studied problem designed to test a variety of robotic abilities. There have been

a variety of RoboCup tasks, including a small, wheeled robot league, both real and simulated

humanoid robot leagues, and the one I focus on: a simulated league. Here, the focus is not on

1.4. EXAMPLE DOMAIN: ROBOCUP 10

mechanics, vision, or robotic control issues, but is placed squarely on environment interaction and

team play. Other than choosing actions and parameters, everything is taken care of, and the usual

complexities of robotics are alleviated. To ensure that the focus is on creating sophisticated players

that reason on their own, rather than simply being effective by unreasonably good coordination

across the team, each player must be controlled by a separate process, and they can only attempt,

without any guarantee of success, to send a few bytes at a time.

The basic format of the game is that of traditional soccer: 11 players per team, with

a standard-sized field and reach for players. The world is two-dimensional, and the world is

continuous in space but discrete in time. Time steps occur every 0.1 seconds, and in each, the

state of the world is updated via stochastic difference equations. Each player can execute one

action per time step, and that action modifies the state of the player or the ball. The agents are

underpowered, so that with momentum they can gain speeds much faster than they can start or

stop in a single time step. Furthermore, they have a slowly-regenerating reservoir of stamina, and

if it is exhausted they may suffer long-term reductions in strength.

To make the game a higher-level task, the basic interfaces with the environment are also

high-level. Instead of having to parse pixels into objects, or to effect changes by low-level joint

angles, the players deal directly with the state of the world. That is, the player observes objects

directly, and receives some (noisy) signal about the position and speed of objects. Similarly, the

player outputs high-level actions like turn or kick, which have the semantics you would expect.

This way, the designers have shortcut many of the complications of physical robotics and made it

possible to dive directly into interesting behaviors.

So that the demonstrations below can be clearly grounded in this simulated soccer envi-

ronment, I will now touch upon the finer structure of the environment. This description is based

largely upon [14], and that is where you should look for an even more detailed look at the soccer

simulator.

1.4.1 Simulator Detail

In this domain, the ball and players (11 per team) are represented as small circles whose

position updates by a stochastic difference equation in discrete time. In particular, each of these

objects has a two-dimension position p and velocity v. Every 0.1 seconds, these quantities update

much like a Kalman filter would predict. The velocity decays by a small constant factor, and

gains a small, proportional amount of uniformly-distributed noise. Then, the velocity is added to

the current position to obtain a new position; no noise is added here. In the case of collisions,

velocities are modified so that the two objects will not overlap. Note that this is not a perfect

1.4. EXAMPLE DOMAIN: ROBOCUP 11

physical simulation: in the case of very high speeds, objects can indeed pass through each other.

The players have some degree of control. In particular, during each time step, a player can

emit only one action. These are atomic actions that have an effect only within a single time step.

Unfortunately for the players, these actions are noisy—for every action, the actual parameter used

is modified by an amount of noise distributed uniformly in a range proportional to the parameter’s

value.

A player can control its own speed by emitting a dash action, which has an associated

parameter of power. This action is a discrete-time impulse, and it changes the player’s speed by

an amount proportional to the power. It accelerates (or decelerates) the player along the direction

it currently faces.

The player may instead emit a kick action, which has two parameters: power and direc-

tion. This action changes the velocity of the ball, if the ball is within a defined radius. The actual

change depends in a complex way upon the direction and distance from the player to the ball; in

general, kicks directly in front of the player are the most effective.

The players also have an additional parameter, that of orientation. This comes with a

restriction—their velocity can only be in the direction they face, so they cannot run in one direction

and face in another. The players can emit the turn action (with parameter moment). This changes

both the player’s orientation and the direction of its velocity. However, again the actual amount

of change depends in a complex way on the player’s current speed; the faster a player moves, the

less effective its turn actions.

In order to make the game more realistic (and prevent unreasonably frantic gameplay), the

players use a complex stamina model. Each player has an amount of stamina that decreases when

it accelerates and otherwise regenerates by a fixed amount in each time step. When the player’s

stamina runs low, not only is the effectiveness of the player’s dash actions reduced temporarily,

but it may suffer permanent reductions in both effectiveness and stamina regeneration rate. These

factors are reset only at halftime—otherwise, the player’s exhaustion is effectively permanent.

Goalies also get a special alternate action catch, with parameter angle. This has the

expected semantics—if the ball is a small distance from the player, at roughly that angle, the

goalie catches the ball. This is the goalie’s main defense against scoring, as it is a more reliable

way of stopping the ball than is kicking it.

The players have a detailed sensing model. Players see objects by receiving messages

about the position, speed, and orientation of objects within their field of view. These messages

identify the objects directly, thankfully obviating the need for any computer vision. The observed

values are not modified by any noise, but instead corrupted by discretization errors, which increase

1.5. WHAT TO EXPECT IN THIS DOCUMENT 12

exponentially with the value of the parameter. Also, all positions and directions are given only

relative to the player, so the player must factor in its own speed, location, and orientation in order

to obtain global positions and speeds for the observed objects. However, this is of course more

realistic, and it is almost always more useful. Similarly, to provide some realism, the player has a

limited view region—objects outside of that region may be identified only by class (e.g. teammate,

ball), or may be entirely unseen.

Finally, in one final gesture to physical realism, the player may turn its head relative to

its body. This turn neck command does not conflict with other actions as do turning, dashing,

kick ing, and catching, so the player can do it in the same time step as one of these others. This

head direction changes only the player’s field of view.

Each player also gets a certain amount of information about its own body. However, this

is relatively limited. The only particularly useful elements are the player’s available stamina, its

neck angle, and a rough observation of its speed.

In order to let the player navigate in a general way, the player can see flags placed at

various landmarks around the field. The sight model for the flags is just the same as that used for

the players and ball. By combining the observations of the flags, it is possible for the player to

have a rather detailed sense of its global position. Even better, the flagged landmarks include the

goal boundaries and several nearby points, making the activities requiring the most attention to

global position much easier.

So, this detailed, continuous-space discrete-time simulator is the backdrop for my demon-

strations. It is a highly useful pre-built robotic simulated world, with an appropriate level of input

and output.

It should be noted that my goal in demonstration is not to create a competitive soccer

team. After all, this competition has been going on annually for more than a decade, and so

hundreds of man-years have been spent, even on single teams (CMU, I’m looking at you!). Instead,

I use this simulator to examine the effectiveness of my proposed representation for actions and

behaviors, and this will not include a complete, soccer-playing team.

1.5 What to Expect in this Document

Because of the complexity of the action model under discussion, I will describe it incre-

mentally. Therefore, to help maintain continuity and show how each piece adds important abilities,

I will keep up with a series of examples. I will begin with the barest sketch of kicking a ball, and

extend it both in detail and into more complex abilities, such as passing, including analysis, re-

1.5. WHAT TO EXPECT IN THIS DOCUMENT 13

covery from errors, and so on. Hopefully, this will help ground you, the reader, in what each piece

means. Moreover, I will include a series of complete RoboCup behaviors that demonstrate the

effectiveness of this framework.

The structure of this document is as follows: In Chapter 2, I give a detailed description of

the components of my representation. I follow this with a look at analysis on this representation in

Chapter 3. I continue by exploring how this model allows for recovery from unfortunate accidents

in Chapter 4. I then summarize the results and implementation of this work in Chapter 5, and I

conclude with a look back at everything and forward toward possible future work in Chapter 6.

14

Chapter 2

Representation of Action

Having motivated a full-featured architecture for action, it is time to say precisely what I

propose and how it satisfies the demands placed upon it. The core idea of this representation is that

we already have good tools for many of these pieces. In order to represent the structure of actions,

we already have a number of tools of varying power. Similarly, there are already approaches that

let us handle the unpredictable vagaries of the external world to greater or lesser effect. I have

selected, modified, and combined two such tools that provide strong coverage of their own domains.

2.1 Conceptualization

Before jumping into the representation of action itself, let us first be sure to carefully

frame the relevant concepts. Once I have shown what needs to be represented, it will be much

easier to see why this representation is a good one. We must consider several factors, including

components both internal and external to the agent doing the acting.

First, we are representing the behavior of an agent acting in an environment. The agent

has control of some things in its world (for a soccer player, its body), and other things can be

controlled only indirectly, if at all (its environment: the field and other players). Similarly, there are

some things the agent observes directly (its senses), and others it cannot (most of the environment,

and quite possibly much of its own body). Both control and perception are likely imperfect, so

noise may be introduced in both input and output. A soccer player may not step exactly where it

intended, nor are its eyes perfect cameras.

Also, both the agent’s output (control) and input (perception) may have multiple chan-

nels. For instance, the agent’s body will likely have multiple actuators, which we could view at

the level of individual motors or muscles or at the level of muscle systems, such as limbs or muscle

2.1. CONCEPTUALIZATION 15

groups. Similarly, the agent’s inputs may include simultaneous visual, tactile, and auditory senses.

This is one of the reasons that concurrent behaviors are so important.

Although the agent may only perceive a small fraction of it, the world’s configuration

may be very complicated. We call this configuration its state, and it may be broken down into

different components. For instance, the state of a soccer game would include the positions and

orientations of the players, their speeds, and so on. These components may interact, and it is

precisely these interactions that make an environment interesting.

Of course, to interact, the state components must not be static, so we must deal with

time. Unfortunately, dealing with time can be tricky, so we shall treat time as discrete. That is,

time jumps in fixed quanta, and no events occur during these jumps, so we do not need to model

anything with differential equations, but can instead use difference equations. That will improve

the precision of the agent’s internal models of the environment and also allow for more interesting

analysis of its behaviors. However, though time is discrete, the environment need not be discrete

in general. It may have discrete components, such as a light that is on or off, or another agent

that is or is not aware of our agent’s presence, but it may still have continuous quantities, such as

the amount of liquid in a container or the position of our agent.

Similarly, the agent’s inputs and outputs are divided into quantized chunks. The agent

receives observations saying that a certain sensor has a particular value. In the same way, the

agent’s space of outputs consists of atomic actions that may have parameters. For instance, the

agent could twitch a muscle with some force, move a motor some angle, or even kick a ball with a

given force and direction, depending on the way the environment works.

Note that our agent need not live in a clockwork universe. Just because time ticks ahead

in a regular manner, that does not imply that the world is predictable. Instead, we allow for

randomness, not only in observations and actions, but also in the environment itself. The new

state of each component of the world is chosen at random, in a way that depends on the state of

the world at the previous time step. Of course, this also allows for deterministic evolution of the

world, but it does not require it. This randomness means that our agent must choose its actions

even though it does not know what will happen in the future.

So, with this setup, there are two main tasks for our agent. First, it must manipulate

the environment to reach its goals. This will require taking certain actions at certain times,

coordinating multiple actions, and reacting to what it learns about the environment. Second, it

must infer the unobserved state of the environment from the observed state, which will allow it

to react more appropriately to its observations. The representation presented here is designed to

combine and extend tools for these separate tasks.

2.2. PROCEDURAL BEHAVIOR 16

World

Predictions

Observations ActionsEfference copy

Action structure and
selection

Procedural
Reasoning about the
world

Inferential

Observations

Figure 2.1: Here we see how the procedural and inferential models interact with each other and

with the world in which they operate.

I use two components, one for each of these tasks. The first is a procedural model based

on the Petri net, and it is good at representing and producing coordinated actions. The second is

an inferential model called the Probabilistic Relational Model, which is superb at describing and

inferring hidden information about the world. These two components interact with each other and

with the world as shown in Figure 2.1. The procedural piece projects output on the world, basing

its actions on the inferential estimates of world state and, for critically fast reactions, on direct

world input. The inferential part maintains a model of the environment, updated by sensory input

and feedback about action outputs from the procedural component. The workings of these pieces

and their interactions are described in detail below.

2.2 Procedural Behavior

In order for our agent to deftly navigate and manipulate its environment, it must be able

to execute the right actions at the right times. To describe such sequences of actions, we will use

modified Petri nets.

2.2.1 Petri Nets

Petri nets are essentially extensions of Finite State Machines (FSMs) that, instead of

keeping only one state token, allow more than one token at a time [63, 33]. Like FSMs, Petri nets

also have circles (called places) that are used to indicate the state. Unlike FSMs, more than one

of these places can have a token at a time; in fact, each place can have multiple tokens. So, the

2.2. PROCEDURAL BEHAVIOR 17

2

3

Figure 2.2: Finite state machine compared to Petri net

full state of a Petri net is a vector that lists the number of tokens in each place, and the meaning

of the net is a combination of the semantics of the places and the number of tokens they hold.

Like FSMs, Petri nets require a way of moving tokens from one place to another. How-

ever, unlike FSMs, Petri nets have multiple tokens that should interact somehow, so we need more

complicated semantics. Instead of just the arcs connecting states in FSMs, Petri nets have tran-

sitions that are connected to places. These transitions have input arcs (arrows pointed into

the transition) and output arcs (arrows pointed out of the transition). The result is a bipartite

directed graph, where transitions are connected only to places, and vice versa. Transitions can

fire, and if they do, they consume tokens at their input places and produce tokens at their output

places, in quantities given by the weights of the input and output arcs. The result is that tokens

are created and destroyed; they need not be conserved. The tokens need not be affected one at a

time, either; each arc can be labeled with a number saying how many tokens are created or de-

stroyed when the transition fires. Of course, transitions that do not have enough available tokens

to consume in their input places cannot fire and are called disabled; when they could fire, they

are enabled. [58]

Historically, Petri nets were used to model asynchronous systems, which is done by assum-

ing that any enabled transition may be fired by some external mechanism outside of our control.

That is, any enabled transition might fire at any time, or might not fire at all. Then, the Petri

net must be analyzed in a way that allows any enabled transition to fire, so rather than studying

what does happen, we study what might happen. For instance, standard analysis includes state

reachability, liveness, deadlock, and so on. For more information on Petri nets and their properties,

see [58].

Let us now establish our running example. One of the most critical things a soccer-playing

agent must do is to kick the ball, and it must do so in a variety of contexts. It must dribble, pass,

shoot the ball, and steal the ball from an opponent. So, in Figure 2.3, we show the basic structure

of a kicking action. As we describe the representation in more detail, we will refine this action.

2.2. PROCEDURAL BEHAVIOR 18

face
target

ready
to turn

kick

facing
target

kicked

check for
obstacles

ready to
check

checked

begin
start

Figure 2.3: A simple example of a kicking event. Our agent will turn to face the target, make sure

there are no obstacles, and only once those two concurrent tasks are complete will it actually kick

the ball.

face
target

ready
to turn

kick

facing
target

kicked

check for
obstacles

ready to
check

checked

start

0.1

0.3
begin

Figure 2.4: In our kicking example, the different parts of the action will take different amounts of

time. For instance, kicking and looking are relatively fast, while turning is comparatively slow.

2.2.2 Time

We need our Petri nets to work in environments where time is critically important. There-

fore, we use an extension for controlling the timing of transition firings, which includes immediate

and timed transitions [70]. Immediate transitions always fire instantly, before any time has passed.

Thus, all immediate transitions fire before any timed transition can fire. We do not, however, re-

quire the immediate transitions to fire in any particular order; instead, they are fired in an arbitrary

order, so analysis in this case proceeds just as in the ordinary Petri net analysis. On the other

hand, timed transitions fire after a fixed amount of time, which may be different for each transition.

In Figure 2.4, we show how timed transitions fit into our kicking example.

See Figure 2.5 for a detailed example with an explanation of timing. This allows fine

2.2. PROCEDURAL BEHAVIOR 19

A

B

C

D

2

3

Figure 2.5: An example of timed and immediate transitions. At time 0, transition A will fire.

Transition B will fire at time 2, enabling C and D. D will fire immediately, but C will fire 3 time

units later, at time 5, followed immediately by D.

control over the timing of actions.

2.2.3 Control

The arbitrariness of transition firing in standard Petri nets can still be quite a confounding

factor, particularly in cases where we care very much which particular transition fires. Therefore,

we use standard extensions of the traditional Petri net definition, in particular the addition of some

arc types that control transition enablement [23]. One such addition is the test arc, a modified arc

going from a place to a transition that does not consume any tokens when the transition fires but

still disables the transition whenever that input place does not have enough tokens. It is indicated

by a dashed arrow. We also add a similar inhibitory arc, which disables the transition when the

input place has more than a certain number of tokens. This is represented by a dashed line ending

in a circle. (Note: a Petri net with inhibitory arcs and no limit on the number of possible tokens

is Turing-complete, so we must be careful to place capacity limits on in the networks or analysis

may become undecidable [23].) See Figure 2.6 for an example of these arcs.

In Figure 2.7, we show how this might apply to our running example of kicking. It allows

us to make a clear decision whether to abort the kick or actually perform it based on the presence

of an obstacle.

2.2.4 Input and Output

Of course, we know that the Petri net must interact with its environment. In particular,

it must receive sensory information from the environment in a way that allows it to change its

2.2. PROCEDURAL BEHAVIOR 20

A B

Figure 2.6: The dashed test arc means that transition B cannot fire until A fires; the dashed,

circle-headed inhibitory arc means that once B fires, A cannot fire again, even if it has tokens

remaining in its other input.

face
target

ready
to turn

kick

facing
target

kicked

check for
obstacles

ready to
check

checked 0.1

0.3

see an
obstacle

abort if
obstacle aborted

begin
start

Figure 2.7: With this control scheme, we can make sure that our agent ends up in the right state

based on whether it sees an obstacle in the kick path.

2.2. PROCEDURAL BEHAVIOR 21

behavior, and it must be able to send commands to its body. Fortunately, the Petri net already

has a way of changing its behavior—the markings of places determine what transitions fire. So, if

observations from the world set the markings in some places, then they will affect the behavior.

Similarly, we attach output events to the transitions of the Petri net.

Observations from the environment may be connected to places. An observation affects

a place by setting how many tokens it has; this happens whenever the observation is received. For

instance, see Figure 2.8: here one place receives an observation of an opponent’s distance. This

place controls two transitions; if the distance is high enough, the player will kick, and otherwise it

will abort.

In the same manner, transitions may be connected to output messages. (This is similar

to the way state changes in FSMs can be linked to emitting symbols, thus describing a language.)

When the transition fires, then some atomic action command is sent to the agent’s body, producing

a result in the world. Depending on the level of detail of the model, this could be a very low-level

action, such as a motor neuron firing, or a high-level one, such as a ‘turn’ command. Such a

command may take parameters; if so, these are given by associated places. In Figure 2.8, we show

how both inputs and outputs would be used in our kicking example.

2.2.5 Continuous Quantities and Mathematical Transformations

Because the agent’s environment may include continuous quantities, our procedural model

should be able to handle continuous inputs and produce continuous outputs, including making

decisions based on these quantities. Therefore, we use continuous places, which are simply places

that hold a real-valued quantity of tokens [17]. It is simple to see how these continuous places

may take inputs from the environment and provide parameters to the atomic actions. However,

using them as behavioral controls requires some care because we would rather not give up the

analyzability of our Petri nets.

Therefore, we restrict the use of continuous places in the following way. Though they can

be the source of test and inhibitory arcs, they cannot have tokens removed or added by transitions.

We do, however, provide a mechanism, other than environment observations, to modify their values.

We define math transitions, transitions which set their outputs to a function of their inputs.

These math transitions make it possible to make decisions based on functions of several inputs.

By making sure continuous quantities only affect the behaviors in carefully-defined ways, analysis

does not need to consider their precise values, only whether they enable or disable transitions.

These new continuous places and math transitions are used in the running example in

Figure 2.9.

2.2. PROCEDURAL BEHAVIOR 22

turn
ready
to turn

kick

facing
target

kicked

no obstacles
checking checked 0.1

0.3

distance
to opponent

obstacle
found aborted

gets sight
of opponent

gets direction
of target

turn
angle

kick
force

50

begin
start

Figure 2.8: Here, we show how the kick network can receive inputs for seeing opponents and the

direction of its target and send commands and parameters for the turn and kick actions. Inputs are

shown as hashed places, and outputs are shown as hashed transitions, with parameters connected

by wiggly dashed lines.

2.2. PROCEDURAL BEHAVIOR 23

turn
ready
to turn

kick

facing
target

kicked

check for
obstacles

ready to
check

checked 0.1

0.3

see an
obstacle

abort if
obstacle aborted

gets sight
of opponent

gets direction
of target

turn
angle

kick
force

gets distance
to target

s+2d

1.0

desired
speed at
destination

begin
start

Figure 2.9: Here, we show how the kick network uses continuous inputs to make decisions and set

its control outputs.

2.2. PROCEDURAL BEHAVIOR 24

2.2.6 Modules

Consistent with the general computer science technique of “divide and conquer,” a pro-

cedural representation that can be segmented will be easier to both design and analyze. For a

Petri net, the simplest segmentation is just to label a set of places and transitions as being part of

a sub-net; then, we can handle this sub-net separately. I will call such a sub-net a module. Note

that in general, not all of the elements of a module are (directly) relevant to anything outside the

module. Instead, some subset of its elements will form an interface with the rest of the full net-

work. Then, when we design or analyze the larger net, we need only pay attention to the module’s

interface. Indeed, when representing the larger net, we can simply reference existing modules and

then describe them separately. Of course, modules may be nested, so that one module contains

and interacts with another module. Although it is not inconceivable that modules could reference

each other in a recursive manner, so that a module contains a module with a reference to itself,

I will generally proceed with the assumption that this is not the case, that instead the modules

reference each other in a directed acyclic graph (DAG) structure.

This complete definition of modules gives us the ability to subdivide any existing Petri

net. However, analysis is simpler on more restricted systems, and so we find it useful to define

a restricted class of modules. For these modules, some elements of their interface have defined

semantics. Let us start by defining input and output Places for the module. An input Place

can only be modified by the outside network by adding tokens, not by removing them. An output

Place can only be modified by the outside network by removing tokens, not by adding them. In

particular, they have the following element semantics:

(Place) begin An input Place with capacity 1. This indicates that the module should start its

activity.

(Place) ongoing An output place with capacity 1. When the module is operating, it leaves a

token here, and does not remove it until it completes.

(Place) done An output Place with capacity 1. When the module has finished its processing, it

will put a token here as it removes one from ongoing.

(Places) interrupts Input Places with capacity 1. Putting a token in one of these while the

module is active indicates that there has been some sort of external problem and the module

should take alternative action, possibly not ending in success.

(Places) errors Output places with capacity 1. If the module ends its activity without reaching

2.2. PROCEDURAL BEHAVIOR 25

turn
ready
to turn

kick

facing
target

kicked

check for
obstacles

begin
check checked

begin
start

0.1

0.3

see an
obstacle abort if

obstacle

aborted

gets sight
of opponent

gets direction
of target

turn
angle

kick
force

aborted

gets distance
to target

s+2d

1.0
desired
speed at
destinationongoing

Figure 2.10: Here, we show how the kick network can be modularized. We extract a module that

checks for obstacles, with one begin Place, one done Place, and one error Place. This way, the kick

network can simply trust each component to work and use it the same way, even if the internals

change. Similarly, we can describe an interface for the kick network that makes it a useful module

for a higher-level behavior.

success, it will place a token in one of its error Places. Which Place receives a token indicates

what sort of failure has occurred.

An example modularization of the kick network is shown in Figure 2.10. Of course, a

module may provide more components than this on its interface, but defining these semantics

means that analysis may be much simpler. For instance, we can determine whether a module may

ever become active with traditional Petri net reachability analysis, or show that two modules will

never be active at the same time by conservation analysis.

2.2. PROCEDURAL BEHAVIOR 26

2.2.7 Demonstration: a RoboCup Behavior

Using only the reflexive, structured-procedure machinery we have so far described, not

including the inferential reasoning yet to be discussed, we have enough tools to produce a useful

behavior. With these enhanced Petri nets, we can create agents that coordinate hierarchical actions

and choose their actions based on a combination of their past observations and their own goals.

They cannot infer information about unobserved factors, but, as the effectiveness of simple life on

our planet points out, that is not always necessary.

For instance, in this section I present a simple offensive soccer agent, made to function in

the simulated soccer environment described in §1.4. This agent passes to its teammate, receives a

return pass, dribbles toward the opposing goal, and takes a shot on the goal. The overall form of

the behavior is shown in Figure 2.11.

First of all, this behavior relies upon the modularity of the procedural structure. The

high-level module references many lower-level modules, each of which encapsulates some lower-

level activity, and many of which are described below. For instance, the kick off action begins

by using a setup module to move into position before the game starts, and a dribble module to

handle the various complexities of moving the player and the ball around the field. Then, the high-

level behavior need only say how these components fit together. By using the lower-level pieces

as building blocks, the overall action is much clearer in structure, making it easier to describe,

analyze, and learn.

Furthermore, the high-level module counts on the structural abilities of our Petri net

variant. It is organized both sequentially and hierarchically, with occasional loops. For instance,

there is a primary sequence in which the player sets up, passes, runs forward, catches the ball,

dribbles to the goal, and shoots. Each of these components is described as a separate lower-level

module. However, in the case that the player loses track of the ball during catching or dribbling,

it will loop back to finding and retrieving the ball. The clear structural mechanics of Petri nets

make this possible.

We should also note that even the high-level behavior makes use of direct actions and

observations of the environment. In particular, a precondition of the go to ball action is that the

agent be facing generally toward the ball. Therefore, the high-level behavior will directly turn

to find the ball before activating this action. This sort of turning could be encapsulated into a

module, of course, but for simplicity and clarity of illustration, it is shown directly.

After the pre-game setup, the game begins with the player’s kick-off pass. Here, the

player passes the ball to a teammate, and the behavior is encapsulated into a pass module shown

2.2. PROCEDURAL BEHAVIOR 27

.

Figure 2.11: An offensive behavior that takes the player all the way from a kick-off pass to a shot

on the goal.

in Figure 2.12. This module is highly linear; it takes a series of steps in order to achieve its goal.

Note that the structure of the module reflects the demands of the environment. Some steps along

this chain require confirmation before moving on, and some do not. In particular, the seeking

portion of the behavior is not complete until the agent sees its target. On the other hand, the kick

itself requires no confirmation of success. The agent can count on the environment in this way, so

it can base its actions reliably on its previous actions.

A low-level behavior like this relies critically upon the direct input/output mechanisms

of the Petri net extension. Those simple extensions to the standard Petri net formalism make

this easy, and allow the agent to use those inputs both for its outputs and for determining the

enablement of transitions. In order to determine the direction of a kick atomic action, the agent

must base this output parameter on its inputs about the player’s location, and it uses the kick dir

place to take this input and produce the appropriate output. Similarly, in order to decide whether

it has found the ball and move on to further actions, it uses information from its senses via the

saw teammate place.

Furthermore, because the effectiveness of a kick action depends on both the angle and

force parameters, the force the player uses must depend on the direction it aims. Therefore, it uses

the mathematical extension to the Petri net to determine the appropriate value. It uses a math

transition to set the value in kick pwr, basing this calculation on both of the relevant quantities.

Note, however, that the agent’s direct use of these noisy inputs is somewhat sub-optimal.

2.2. PROCEDURAL BEHAVIOR 28

.

Figure 2.12: A module that performs a kick-off pass to a specific player.

Because the agent does not receive the facts about its teammate and the ball, but only an error-

distorted signal, its output commands and parameters will be affected by those same errors. This

distortion could be removed by inference that expects these errors and smooths the data to correct

for them. A component to do this is described in §2.3.

In Figure 2.13, we see the module that navigates the player to the ball. It has one input

place, begin, and two possible outcomes—one in which it has arrived at the ball, and one in which,

for some reason (such as the actions of an opponent, or navigation errors because of noise) it has

lost track of the ball. This module is used both in the high-level behavior and also in the lower-level

dribble behavior, where the agent repeatedly kicks the ball and moves to keep control of it. It is

very similar to the slightly simpler version analyzed in Appendix A.

This ball-seeking behavior, despite some complexity for reacting appropriately when the

ball is lost, has a simple loop and conditional structure. Because of the restrictions of the RoboCup

environment, in each time step, the agent can only accelerate or turn, not both. That means that

at each time step, the player must choose which of these actions to take. Thus, the heart of this

behavior is a loop that repeatedly iterates making this choice. Based on how closely it is facing

the ball in state begin iteration, the player either turns toward the ball more closely or accelerates

toward the ball. If it turns, it turns toward the ball, with a small damping factor to prevent

oscillation in the face of randomness. If it accelerates, the player chooses its speed by a formula

depending on the ball’s distance and speed, as well as how much stamina the player has available to

spend on such activities. (Recall that if the player overexerts itself, it suffers substantial penalties.)

At the same time, there is a continuous monitoring process going on here. The player

is not the only thing that might affect the ball, and should the player lose the ball, it must react

2.2. PROCEDURAL BEHAVIOR 29

.

Figure 2.13: A reflexive behavior to go to a moving ball. It starts by looking for the ball if it

cannot currently see it, then runs a main loop which repeatedly decides to turn to face the ball or

to accelerate toward the ball. If it ever loses track of the ball, it goes to the lost ball state, which

is an output of the module, and thus passes the error to the higher-level module.

appropriately. What is appropriate depends on the circumstance, however, and such decisions are

beyond the scope of this module. Thus, if the player ever loses sight of the ball for two consecutive

time steps, long enough to believe there is something more than just a sensory error at fault, it

aborts the main action loop and goes directly to the lost ball state. Then, the higher-level behavior

that is using this module can react as needed.

In Figure 2.14, we can see the middle-level behavior dribble. Its structure is primarily

looping: it repeatedly kicks the ball toward its goal and then retrieves it. For the ball retrieval, it

relies on the low-level module go to ball to accomplish this. It performs the kick itself, as it does

this in a somewhat irregular way—it kicks the ball lightly in a particular direction, and this is not

made into a separate module because it is highly particular to this one action.

Note that the dribble action is also continuously monitoring possession of the ball. If

2.3. INFERENTIAL REASONING 30

.

Figure 2.14: A reflexive behavior to dribble the ball to a destination.

it lets the ball get too far away, it has lost the ball, and presents this error to the higher-level

behavior for appropriate action. In this case, it is supposed to let the ball get some distance away

as it dribbles, so it does not check for this distance error just after it has kicked the ball.

This behavior is successful in its objective: given a simplified environment without oppo-

nents, it scores on the opposing goal. It is simpler than we might like because of its purely reflexive

function. It does not do any inference on what is going on in the world, but, to the degree to which

it can rely directly on its senses, this behavior is quite capable. It reliably goes to the opposing

goal, shoots, and scores.

2.3 Inferential Reasoning

In addition to executing complex routines with interrelated components, agents must also

cleverly interpret their environment and use that interpretation to inform actions. The procedural

component we have discussed so far is far from ideal at that sort of reasoning. Instead, we will

use probabilistic reasoning representations designed for precisely this sort of thing. The central

representation is called a (dynamic) Probabilistic Relational Model (PRM) [28]. It is a generaliza-

tion of the more standard Bayesian network (BN) [62]. To spare the casual reader from the vast

ocean of literature on this topic, I will summarize the key points below. I will describe these tools

2.3. INFERENTIAL REASONING 31

ball_distance

seen_ball_distance

ball_speed

seen_ball_speed

Figure 2.15: Here is a partial structure structure for the variable dependencies in a soccer world.

The variable ball speed is directly related to ball distance, but not to seen ball distance.

starting with the simplest, so the explanations build on each other.

2.3.1 Bayesian Networks

Bayesian networks, also known as Bayes nets, are graphical (i.e. graph-based, not image-

based) models of probabilistic data. The probabilistic idea is that the world contains random

variables. Each random variable is a quantity that takes a value, but instead of that value being

determined in some deterministic way, it is chosen randomly. The distribution from which the

value is chosen may depend on the values of other variables. [62]

The graph part comes in as follows: Each variable is represented as a node in a graph. The

nodes may be connected by directed edges, each of which represents a probabilistic dependency.

So, a variable x with an edge going to variable y means that y depends on x. In other words, the

distribution of y is affected by the value of x. Similarly, if there is no edge between x and y, there

is no direct statistical dependence between them. An example structure for the soccer world is

shown in Figure 2.15.

This graphical structure alone is not enough; we also require exact probabilities, which

are given as conditional probability distributions (CPDs), like P (y|x). Each variable has a dis-

tribution over its possible values given the values of its parent variables, where the parents are

determined by the graphical structure. So, when one specifies a Bayes net, one must give both the

(graphical) structure of the network, which indicates the dependencies, and the CPDs, which give

2.3. INFERENTIAL REASONING 32

the precise distributions of the variables. These local conditional distributions, taken together,

define a complete (joint) distribution over all the variables. That full distribution is given by

repeated applications of the chain rule,

P(x, y) = P(y|x)P(x)

So, by multiplying together all the conditional distributions for each variable given its parents, we

can obtain a complete distribution.

For instance, in Figure 2.15, the full distribution is given:

P(ball speed, seen ball speed, ball distance, seen ball distance)

= P(ball speed)P(seen ball speed|ball speed)

P(ball distance|ball speed)P(seen ball distance|ball distance)

We then eliminate the variables that are uninteresting by summing them out, so that we

can get the distribution over just the variables that interest us. For instance, we may calculate

P(y) =
∑

x P(x, y) =
∑

x P(y|x)P(x). We might also do such inference to find the distribution of x

given a known value of y = yi: P(x|y = yi) = P(x,y=yi)
P(y=yi)

Of course, computing the full distribution

can be quite time-consuming, and, unsurprisingly, there are algorithms for calculating these distri-

butions without computing the full cross-product distribution. The two relevant methods are the

Variable Elimination algorithm [75, 21] and the Junction Tree algorithm [38, 47]; the fundamentals

of these methods are discussed later.

What we have considered so far is a way to extract information about how variables are

likely to turn out in the world in general, but not in any specific cases. To extend the idea to

specific cases, we add the concept that some variables can be observed. These variables have

a known value; then, the idea is to find what values the other variables are likely to take, given

what we have observed. In our soccer example, the observed variables will come from what the

agent senses about the world. For instance, the agent sees something about the ball’s distance

and speed, though its sensors give noisy readings that are not always identical to the true value of

these variables. Thus, in Figure 2.16, those observed variables are shown as shaded.

This representation is good for helping us model the agent’s environment. The world is

full of quantities that are related to each other. Furthermore, because these quantities are often

related by very complex relationships, and often they depend on things the agent does not or

cannot know, we are best off thinking of them as random. For instance, even macro-level effects

like the bouncing of a ball, which are almost entirely deterministic, depend on tiny irregularities

and starting conditions, so that a roulette ball seems random to us. Therefore, treating those

2.3. INFERENTIAL REASONING 33

ball_distance

seen_ball_distance

ball_speed

seen_ball_speed

Figure 2.16: In standard Bayes net notation, observed variables are shown as shaded. Here, the

soccer agent observes the variables seen ball speed and seen ball distance; based on this informa-

tion, it can infer the distributions of the other variables.

quantities as random variables with relations provides leverage for inference. The agent observes

some of these quantities, and can infer likely values for the others.

Connection to Petri Net

In order for this probabilistic component to be worthwhile here, it has to affect our agent’s

behaviors. It does our agent no good to compute a distribution over the position of the ball unless

it can then use that to control the ball. Therefore, we need a way for the procedural Petri net to

view the distributions of the random variables. The sensible way to do this is for it to see those

distributions in its own terms. That is, to the Petri net, a random variable looks like a place, and

its distribution looks like a number of tokens. That number of tokens may then determine whether

transitions are enabled or not.

Specifically, the Petri net sees the influential random variables by including an equivalent

place for each variable. The number of tokens in that place is given by a function of the variable’s

distribution. That is shown by a double-lined arrow from the variable to the place, as seen in

Figure 2.17, though it may be elided in complex diagrams. Such functions might be the expectation,

variance, argmax, or so on. The output of the function need not be a discrete number—after all,

the Petri net can use continuous quantities for activating or disabling transitions. This inferred

quantity may also be used as a parameter to actions, of course. This equivalent place cannot have

2.3. INFERENTIAL REASONING 34

ball_distance

seen_ball_distance

ball_distance

ready

kick
kicked

ball_speed

seen_ball_speed

expectation

Figure 2.17: The ball distance place has a token quantity equal to the expectation of the corre-

sponding random variable.

its number of tokens set by the Petri net, so the only arcs affecting it must be test or inhibitory

arcs, which do not modify their inputs.

For instance, in Figure 2.17, the Petri net sees the (inferred) expected distance to the ball.

If that position is close enough for a kick to be effective, then the kick transition will be enabled,

and the agent will kick the ball. If it is too distant, however, the agent will instead accelerate to

pursue the ball.

Similarly, it is crucial for the inferential component to base its inference about the envi-

ronment on the actions the agent itself has taken. Therefore, the inference needs to depend on the

agent’s procedural component. The way we connect them is to make the Bayes net view the Petri

net in its own terms. Places have equivalent observed variables whose observed values are deter-

mined by the number of tokens. These observed variables have the usual conditional distributions;

they may be causes or effects of other random variables. When inference is performed, then, these

variables about the agent’s internal state inform its knowledge of the hidden variables. Note that

for this to be feasible with a discrete random variable, the place must have a limited capacity, so

that its number of tokens is bounded to the number of values the variable could take.

For instance, in Figure 2.18, the Petri net’s kick transition puts a token in the kicked

place. This place corresponds to an observed variable in the Bayes net. That variable affects the

distribution of the ball’s speed. Therefore, if our agent has kicked the ball, it will factor that

information into its estimate of the ball’s speed.

2.3. INFERENTIAL REASONING 35

ball_distance

seen_ball_distance

ball_distance

ready

kick
kicked

ball_speed

seen_ball_speed

expectation

observation

kicked

Figure 2.18: The kicked random variable corresponds to the equivalent place and helps to infer

the ball’s speed.

2.3.2 Bayesian Inference

In order to use inferred distributions, the agent must use some algorithm to calculate

posterior distributions given its priors and observations. Here, we review two standard methods.

In the Variable Elimination algorithm, we remove one variable at a time [75, 21]. When

we remove a variable, we must connect the variables that are related to it. For instance, if in

Figure 2.19, we eliminate the variable w, that causes u, x, and y to become related, though it does

not change the structure for z. The distributions for those newly-connected variables are computed

by forming the joint distribution and then summing out w. If we do this for each uninteresting

variable at a time, we will end up with just the variables we care about. The complexity of

this method depends on the order of elimination. Some seemingly-simple Bayes nets can have

exponential complexity because so many variables become related during elimination.

A related but more flexible method is the Junction Tree algorithm [38, 47]. This can

give us the same sort of results as variable elimination, but for all variables simultaneously. Here,

instead of eliminating the variables, we notice that a lot of the same information would be passed,

no matter which variables we eliminate. So, we look at how the variables would be connected if we

did eliminate them, to get the structure of that information, and then we compute that common

information. Each cluster of connected variables is called a clique, and these cliques are connected

2.3. INFERENTIAL REASONING 36

u

w

x y

z

u

x y

z

Figure 2.19: Eliminating variable w connects u, x, and y, but leaves z untouched.

according to the way the variables they contain are connected. This connectivity has the useful

property that it can be acyclic—if two cliques are connected, their connection separates the clique

tree in two pieces. So, we pass information between cliques, each summarizing everything going

on its side of the tree. Then, with only a little extra effort, we can get the marginal distributions

we want.

Note that both of these inference methods are exact, requiring discrete state variables

and taking time exponential in clique size. There are other, inexact inference methods, such as

particle filtering, which are very useful for estimating complex continuous distributions [6]. For

environments of significant complexity, including the soccer domain discussed here, those methods

are likely better. Not only do they make it easier to handle the continuous variables we may

need, much better than discretization, but they also make it easier to manage the tradeoff of time

complexity versus accuracy. For exact methods, a more complex model means that inference takes

longer, so to make an agent that runs in realtime, it may be necessary to use a simplified model.

This is means that these tradeoffs must be made when constructing the model. On the other hand,

with particle filters, both the time and accuracy of the model depend on how many particles are

sampled, which can be adjusted at any time. Thus, it is easier to make fast, appropriately-accurate

inference systems with particle filtering.

Despite their advantages, approximate inference methods come with their own set of

downsides. Most prominently, they require tuning to improve their accuracy. For instance, particle

filters need to be designed to sample points in the right locations, and this may include the design

of sampling distributions and rejection filters. Thus, although these methods would be a good

match to a more practical implementation of the architecture described in this dissertation, this

2.3. INFERENTIAL REASONING 37

ball_distance

seen_ball_distance

ball_speed

seen_ball_speed

ball_distance

seen_ball_distance

ball_speed

seen_ball_speed

t

t

t

t

t+1

t+1

t+1

t+1

time t+1time t

Figure 2.20: A simple dynamic Bayesian network.

proof-of-concept construction is better off done using the exact methods I have described here.

2.3.3 Temporal Inference

Since the world does not sit still, we expect the random variables that describe the world

to change. This is a common case for Bayes nets to handle, and the standard solution is to view

the world as a series of discrete time steps. That is, instead of just having a variable A, we have

a series of variables At, where t is a time counter taking an integer value. All the variables tagged

with t are in the same time slice. Then, the variables in different time slices depend on each

other. For instance, in Figure 2.20, in every time slice t, the variable At depends on both its earlier

value, At−1, and on the current value of Bt. These generic dependencies are defined with regards

to the time variable t, then unwrapped into a series of variables, A0, A1, etc. This is not a new

concept; it has been investigated in depth [59].

The key idea in inference is that we want to eliminate the variables from the past. We

cannot afford to keep around all the past variables; otherwise, the inference complexity will depend

on how long we have been dealing with our environment. So, at each time step t, we eliminate the

variables at time t−1, encapsulating all our knowledge of the past in our inference about variables

at time t—which is feasible because of the fact that the current time step separates the past from

the future, also known as the Markov property. Then, we add new variables for time step t + 1

and infer what we must about them from time step t.

We may do this inference with the junction tree algorithm. However, in doing so we must

remember that the junction tree is constructed by finding what connections would be created by

an elimination of all the variables. Because we want to eliminate variables from the past, then

we find that this will connect variables in the future. In general, then, after eliminating many

2.3. INFERENTIAL REASONING 38

past variables, there may be many variables in the present connected to each other. Exactly how

they are connected depends on the structure of the graph in a slightly non-obvious way. Thus, the

complexity of the temporal inference depends on the precise structure of the variables’ relations.

Of course, after iterating over a few time steps this process will converge, so that the set of cliques

will be the same in every time step. Then, we do inference simply by computing distributions in

all cliques and then, when moving forward in time, we simply shift the inferred distributions at

time t+ 1 back to time t; then we can again compute distributions for the new t+ 1 slice.

Interaction with Petri Net

We now have two temporal components. First, the Petri net has delays that control how

transitions fire over time. Second, the Bayesian network moves in steps of discrete time. How do

these two concurrent components coordinate timing?

For the representation described here, these two components interlace in the simplest way

possible. We define a length of time, tB, that corresponds to the discrete time step of the Bayesian

network. Then, with a period of tB, the agent infers random variables’ posterior distributions and

shift the time slices back one step, eliminating the old variables and introducing new ones. This

will change the numbers of tokens present in the variables’ equivalent places, which may enable or

disable transitions. Meanwhile, the Petri net, designed for concurrency, simply keeps concurrently

firing transitions on their own schedule.

This contrasts with another sensible way to do inference: rather than having the Bayes net

update with period tB, we could instead link its update to the firing of a particular transition. That

is an advantage because performing inference may be a lengthy task depending on the complexity

of the variables’ structure. By only doing complex inference when needed, we will spare possibly

important resources. However, this is not highly effective with temporal Bayes nets. If our soccer

player is tracking the ball using noisy sensors, it must update its estimate of the current location

and speed frequently enough to smooth out the noise; it has no idea when the right time to do

an update is. There are possible compromise methods, such as using different granularities of

networks for frequent simple, temporal inferences and occasional deep inferences. However, we do

not examine them here, as they are beyond the immediate scope of this project.

2.3.4 Objects

So far, we have not at all taken advantage of the fact that the world contains objects.

Humans are able to infer and react very quickly in part because we use a simplified model of the

2.3. INFERENTIAL REASONING 39

distance

seen_distance

speed

seen_speed

ball opponent 1

distance

seen_distance

speed

seen_speed

plan

facing

facing

role

opponent 2

distance

seen_distance

speed

seen_speed

plan

facing

facing

role

Figure 2.21: Some simple PRM objects.

world as much as possible. One example of that is that we link clusters of properties to particular

objects. Objects are grouped into classes with the same sorts of properties. For instance, soccer

players have positions and velocities, orientations and gaze directions. They also seem to have

some hidden properties, such as roles, intentions, moods, and expectations. We need not consider

the relations between a player’s properties as separate for each player. Instead, the players have

that in common; though their properties might take different values, the way they are related is

the same. It would be good to capture that similarity in the probabilistic representation.

Fortunately, there is a way to represent objects with random variable properties. It is

called a Probabilistic Relational Model [28], and the idea is very much as I have suggested so far.

The universe contains objects, which themselves have properties, represented by random variables.

The objects come in various types; objects of the same type have the same structure and conditional

prior distributions for their variables. Thus, we can simply define the structure and distributions

once, and they will apply to all the objects of that type. The objects’ variables can be in time

slices, just as ordinary variables would be [65]. For instance, in Figure 2.21, you can see several

example objects and their (timed) random variables.

However, a universe of isolated objects would be rather sad and lonely. In our real

universe, objects affect each other, and our representation of objects must be able to describe this

as well. In the real world, not all objects affect each other—they only do so when they are related

in some way. For instance, objects that are touching may push on each other, or a soccer player

guarding another may move to stay near the player. So, the world also contains relations that

describe how objects affect each other. If a set of objects is in a relation, then that relation can

change how the variables are connected, including connecting variables in different objects and

modifying their conditional distributions. For instance, in Figure 2.22, we see that the possesses

2.3. INFERENTIAL REASONING 40

distance

seen_distance

speed

seen_speed

ball opponent 1

distance

seen_distance

speed

seen_speed

plan

facing

facing

role

opponent 2

distance

seen_distance

speed

seen_speed

plan

facing

facing

role

possesses

Figure 2.22: A simple PRM relation.

relation between a player and a ball makes the ball’s position dependent on the player’s position

and orientation.

There are a number of approaches to working with PRMs. The one described here is a

slight simplification of that given by [56]. That formalism allows for distributions not only over

the variables of objects, but also over the number of objects in existence. It is also possible to

do lifted inference with such a model, allowing the elimination of whole classes of objects at a

time [19, 20, 57]. Alternately, we can eliminate the variables inside each object, so that then later

inference can only depend on the object’s interface [45].

We use a relatively simple method. We assume the world is closed, taking as given the full

set of objects and hence the full set of random variables. So, we implement inference by grounding

all the objects, creating a flat, conventional Bayes net corresponding exactly to the object-based

description. The structure of the Bayes net is given by the structure within the objects and the

active relations.

Even though we do not use the objects explicitly during inference, this use of objects is

not merely a definitional aid. Yes, it does make it easier to define probabilistic networks. It may

also help to learn them by capturing some of the important constants, making it easier to express

complex relationships. However, it also allows for dynamic structure in the probabilistic model.

Not only do the variables’ values change over time, but the way they are linked may change over

time. For instance, a relation such as Possesses may hold on Player3 and Ball1 at one point

in time, but that may later change. This will change the way the variables in the Bayes net are

2.3. INFERENTIAL REASONING 41

distance

seen_distance

speed

seen_speed

ball opponent 1

distance

seen_distance

speed

seen_speed

plan

facing

facing

role

opponent 2

distance

seen_distance

speed

seen_speed

plan

facing

facing

role

opponent
distance

ready

kick
kicked

expectationopponent
object

1

Figure 2.23: An object place (opponent object) makes the Petri net use the expected value of that

particular opponent’s distance to make its decision whether to kick the ball.

linked. This raises the question of how our agent knows which relations hold at any moment. That

is explained below.

Objects and Petri nets

An activity in the Petri net may also be related to a particular object. For instance,

the agent might want to pass to a particular player, to guard a player, to go toward a particular

object, or so on. That is, it might not want to name ahead of time which variable would influence

the behavior—instead, it might want a variable belonging to some object. Therefore, the Petri net

needs to be able to pass around objects.

We allow this by defining object places, places which hold objects as tokens. For

simplicity, each object place can hold only one object at a time. These objects are moved by

transitions: if a transition that takes an object place as input fires, it puts that object in each of

its output object places. (It would be possible to define more complex methods where multiple

objects get moved around; however, that seems unnecessary and overly complex.)

2.3. INFERENTIAL REASONING 42

successbegin

aborted

Pass

target

Figure 2.24: The external view of a Pass module that takes a target teammate object as a param-

eter.

Those object places are then linked to the Petri net’s views of random variables, as shown

in Figure 2.23. That means that the variables are variables belonging to objects—it is the copy

of that variable that belongs to the object in question. Then, the agent can pass these objects as

parameters to sub-networks, so that, as in Figure 2.24 for instance, the Pass network aims for the

target’s location.

Though we have described how to move object tokens around, how do these objects get

into the Petri net in the first place? Object places can be given an expression to optimize. For

instance, perhaps we want the agent to find the nearest opponent—then it could extract the object

that minimizes the expression opponent.distance. Or, maybe we want it to find the second most

open teammate, if one is sufficiently open; then, it would extract the object that has the second

highest Distance(teammate.position, opponent.position), as long as it is at least 10 meters. In this

way, objects can be pulled into the Petri net as object tokens.

Finally, our agent must determine what relations are active. We permit this by creat-

ing clusters of object places that together give the elements of a relation. If the object places

are all filled, then the relation is active on those parameters; otherwise, it is not. This way,

our agent can specify the active relations based on its activities. Note that this subsumes a

purely Bayes net-based method, where, for instance, we say that the Guarding relation holds if

Distance(teammate.position, opponent.position) < 4 meters. Because we can extract such related

objects into the Petri net, we can use object tokens to make just that kind of relational definition,

but we can also base the agent’s relations on what it is doing.

This raises another use of relations—we can use relations to give varying grains of detail

in probabilistic inference. Because it takes more resources to infer highly-linked variables, we

want our agent in general to track unimportant objects with fewer links. This gives our agent a

lower-quality estimation of their values, but it lets it focus its attention on the important objects.

2.3. INFERENTIAL REASONING 43

Then, we want those important objects to have more densely-linked variables. Well, we can define

relations such as Attended. For opponents which are not attended, then this relation does not hold,

and the links present in Attended are not there. For an opponent the agent cares about, it can put

that opponent in a relation element in the Petri net, causing the Attended relation to hold on it.

Then, for this particular opponent, its variables will be linked at a finer grain, allowing our agent

to spend more of its resources getting a better estimate of what this object is doing. Thus, we get

improved control over what sort of inference is done.

2.3.5 Demonstration: A RoboCup Goalie

To demonstrate the use of the inferential component, and to show how all the extensions

are useful, I now present another example soccer behavior: that of the goalie. Where the previous

offensive behavior relied on a simple world without too much need for prediction or understanding of

the surroundings, the goalie must predict the future in order to prevent the opponents from scoring

goals. This is much more feasible with inference about the environment than with a behavior based

purely on direct observations. Therefore, the goalie makes direct use of the inferential model.

The goalie has a probabilistic model for the world. For instance, it keeps particularly

close tabs on the ball. The ball has a few observable measurements, in particular its distance and

direction, plus the rates of change of these. These have precise values in the environment, but

the agent only sees corrupted versions of them. They also evolve in a noisy way. Therefore, a

probabilistic model like a Kalman filter is a highly appropriate model.

In Figure 2.25, we see dependency structure of the agent’s model of the ball. This is

a dynamic Bayes net with random variables for observed distance and direction, as well as their

derivatives vdist and vdir, plus an observation of whether the ball was directly observed at all,

seen. It also tracks two hidden variables, dist and dir, which are updated in time and hence have

two temporal components, in time slices t and t-1. Each of these variables is discretized into about

10 different bins; the distributions between time steps are therefore somewhat complex. These

hidden variables, which are smoothed out from the directly-observed noise, are then used in the

goalie’s Petri net component. This allows it to make decisions based on information which may

not be directly observed, but predicted based on observations from times past. This illustrates the

basic function of the inferential model.

Note that the network might be more accurate if it was more highly-connected. After

all, the variable seen depends naturally on both dist and dir, as the visible region is a limited

distance in front of the agent. However, because inference is performed exactly, via the Junction

Tree algorithm, the time complexity of the inference is exponential in the size of the largest clique.

2.3. INFERENTIAL REASONING 44

Figure 2.25: The probabilistic network for a ball object.

Therefore, it is important for making inference fast and efficient that we try to keep the variables

in separate, unconnected components, so we avoid making both dist[t] and dir[t] parents of seen.

This results in inference that is more useful because its results are more timely; however, the

estimates of world values are necessarily less accurate, as is always a tradeoff when it comes to

inference. For this reason, I suggest that future researchers investigate the effectiveness of particle

filters in environments such as this, as they allow finer-grained control over the tradeoff between

accuracy and computation time. However, for this first demonstration, exact inference makes a

better proof-of-concept.

In Figure 2.26, the agent has a probabilistic model for opponents. These opponents

contain similar attributes to the ball, such as distance, direction, and the rates of change of those.

However, one thing to note is that there are many opponents on the field at one time. Therefore,

the agent simply instantiates multiple instances of the opponent network. Without any relations

to other objects, the agent does not connect each opponent’s variables to those of other objects.

Instead, by default the opponent’s random variables are related as shown in the figure.

Note that, although it receives similar observations about all opponents as about the

ball, the goalie does not care about these in quite the same way. Many opponents are not directly

related to the goalie’s immediate concerns, so the goalie need not track them in quite as refined

a manner. Therefore, the probabilistic model for opponents in Figure 2.26 is noticeably simpler.

Indeed, the agent does not even do temporal inference over the distance and direction to the player,

2.3. INFERENTIAL REASONING 45

Figure 2.26: The probabilistic network for an opponent object. It is relatively unrefined, as the

goalie does not receive a benefit from closely tracking presently-irrelevant opponents.

though it does use its priors to smooth the direct observations. This is similar to the way that we

humans avoid tracking other people unless they are brought to our attention or relevant in some

way. Once they gain this attentional focus, we can track them in great detail, but we will not do

so until it seems useful.

To provide an attentional mechanism similar to that of humans, the agent can use a

relation over objects. Consider the relation shown in Figure 2.27. This is a single-object relation,

attendedOpponent(Opponent), which is true only for the opponents that, for one reason or another,

the goalie finds most relevant. Here, the goalie adds additional links between variables, imposing

temporal inference on the variables dist and dir. Now, the agent carefully tracks and predicts these

variables based on observations from previous times. Of course, this requires more computational

resources. However, by carefully choosing which opponents it attends to, the goalie is able to spend

more resources on those attended players than it could if it had to spread its resources equally. It

thus tracks a few players more accurately, while sacrificing its estimation of the others.

Similarly, the agent has a lot to gain by making predictions based on the player that

currently possesses the ball. Knowing what that player is likely to do will make it much easier

for the goalie to make decisions on its future actions. Therefore, the goalie maintains another

relation, this one possessesOpponent(Opponent, Ball), describing an opponent possessing the ball.

This relation is true if an opponent is sufficiently close to the ball to control its velocity. It allows

2.3. INFERENTIAL REASONING 46

Figure 2.27: The probabilistic network for an attendedOpponent relation, which holds for those

opponents to whom the agent is paying special attention. It is more connected and detailed than

the ordinary opponent network, allowing the goalie to track such an opponent more effectively.

the player to use what it knows about the opponent to infer additional information about the ball’s

attributes.

In Figure 2.28, we see the structure of the goalie’s probabilistic model for the possess-

esOpponent relation. Based on the opponent’s distance and orientation, that opponent makes a

decision on whether to shoot the ball; if it does, the ball will start moving quickly toward the goal.

The precise details are given by the probability distributions over the variables, but the structure

makes it clear what the general relationships are.

Given these inferential tools, the goalie is then able to react more appropriately than if it

was basing its decisions on direct observation. In particular, in Figure 2.29, the goalie anticipates a

shot on the goal, so it readies itself to block any such attempt. This module is largely linear, as the

goalie has only one chance to actually use the catch action, which has a refractory period preventing

overuse. The goalie therefore uses its estimates of the ball’s position and speed to dash into the

ball’s way and precisely time its catch. It does not use the estimated values individually, of course;

it instead derives quantities such as time to catch and expected point of closest approach, and

then uses these highly relevant statistics to directly make its decisions. These derived quantities

are used not only as test and inhibitory inputs to transitions, but also as parameters to output

actions.

2.3. INFERENTIAL REASONING 47

Figure 2.28: The probabilistic network for the possessesOpponent relation between an opponent

and a ball object.

.

Figure 2.29: The goalie behavior for catching the ball.

2.4. REVIEW 48

.

Figure 2.30: The high-level goalie behavior.

The overall behavior for the goalie is shown in Figure 2.30. This behavior is essentially

cyclic, as befits the goalie’s task. The goalie repeatedly catches the ball and clears it away from

the goal, doing what it can to help its team. The finer detail is as follows: The goalie spends most

of its time watching the ball; when it notices danger, it leaps into action to protect the goal. If

that is successful, the goalie clears the ball and goes to a generally-useful goal-watching position

and resumes its watchful waiting. Similarly, if the danger is resolved, or if the goalie fails to catch

the ball but instead lets it past, the goalie resets its position again.

Finally, the goalie is effective. It is able to react appropriately and successfully stop shots

against the goal it guards. By taking advantage of its environment estimation abilities, it goes to

the location it needs to and does what it must to accomplish its task. Thus, we see that the goalie

demonstrates the advanced probabilistic tools used in this representation.

2.4 Review

Having now examined all the pieces of this rather complex representation, let us recall

them and consider their ultimate effect.

First, the procedural representation captures the structure of actions. By using a Petri

net, it is able to describe how actions occur in sequence or in parallel. Breaking the Petri nets

into modules allows for hierarchical structure, and linking them to the environment via inputs and

outputs allows reflexive behaviors that react based on direct inputs.

Meanwhile, the inferential component allows reasoning to determine the course of our

2.4. REVIEW 49

agent’s actions. Using cutting-edge first-order probabilistic tools, it takes ambiguous data and

infers likely truths. It describes the structure of the world, including objects and their connections.

It can focus its efforts on the most important objects.

Finally, these two components play nicely together. The system as a whole makes complex

behaviors based on inferred information, with fast reflexes available in critical times. It can include

the effects of its own actions on its guesses about the present, and it can conclude relationships

about objects in the environment based on its observations and actions. All in all, this is a very

capable structure for letting computers consider and produce actions.

50

Chapter 3

Analysis and Proofs

The largest motivation for representing procedures using Petri Nets, rather than some-

thing more expressive, such as arbitrary computer code, is that they permit analysis. We can

examine a Petri Net and determine its execution properties, such as whether it may deadlock,

without simulating every possible execution trace. In order to have confidence in behaviors we

construct, we may want to analyze them to determine whether, or with what probability, they

accomplish their goals. In particular, we might wish to analyze a behavior to determine whether

(or with what probability) it will reach a particular goal, failsafe state, or error condition.

However, the main complication to any sort of analysis is that we cannot analyze any

behavior in isolation—it will only function properly when coupled to the proper environment.

Therefore, what analysis methods we may apply depend on the way we describe the environment,

and their complexity depends on the difficulty of analyzing that environment. This is a well-known

problem from control theory, as an exceedingly simple controller may control a complex system to

achieve some goal, but proving this fact can be difficult or intractable depending on the system

and goal [66].

Fortunately, the modular representation we use allows for decomposition of both behaviors

and environment, which allows us to analyze sub-modules and then combine the resulting analyses

to get an analysis of the complete agent. Those sub-systems may be analyzed either by further

decomposition or by a variety of other methods:

• First, for high-level modules, we can use our analysis of the sub-modules to simplify our

task. We need not examine every possible state, but instead we can use the modules’ pre-

and post-conditions to verify that the behavior will work as intended. §3.1

• For the general case, we can use a Markov model analysis method to determine detailed

3.1. ANALYZING HIGHER-LEVEL BEHAVIORS 51

AccelerateOrient Cruise Slow

begin done done
(distant)

done
(close)

begin begin begindone done

failed error
ball

moved

done

begin

error

Go to Ball

Figure 3.1: A behavior to approach a stationary ball.

probabilities of completion states. This is a pleasingly automated method, as Markov models

have been well-studied. Unfortunately, it requires an extremely precise description of the

environment in the form of a temporal Bayes net. (This precision may be relaxed to some

extent, as I will describe.) Furthermore, in complex environments, when the agent’s internal

states may eventually couple otherwise unrelated environment variables, the time and space

required to complete the analysis may be excessive. Thus, this method gives strong results,

but it has a set of drawbacks. §3.2

• Sampling methods can provide guarantees sufficient for some purposes. In this case, we would

sample initial states and executions of the behavior and use the statistics of the resulting

states to approximate the true distribution over the behavior’s effects. Alternately, we can

back-trace from errors and then determine how likely those precursors of problems are. As

always, sampling methods guarantee nothing absolutely, but if sampling is done correctly,

then we can still get statistical certainty estimates about the analysis. The degree of certainty

depends on the number of samples we take and the size and structure of the environment,

so as always the analysis will get increasingly complex as we demand tighter bounds in a

messier world. §3.3

• Finally, the most adaptable method is to use hand-constructed proofs to show that a given

behavior reaches some state. These are the most flexible analyses in terms of the environment

because the human analyst can work out how to relax the restrictions on the environment as

much as possible while still keeping the proved result intact. Thus, the same behavior can

be used in similar, related environments without re-analysis. §3.4

3.1. ANALYZING HIGHER-LEVEL BEHAVIORS 52

3.1 Analyzing Higher-Level Behaviors

The analysis of a complete behavior is built on the individual analyses of its components.

If we can already summarize what each module will accomplish, then we can understand what

their combination will do. We can do this just as is done in standard logical planning [51]. Each

module has preconditions for it to operate correctly and postconditions it guarantees when it

finishes. (It may also have alternate end conditions, such as if something unexpectedly changes in

the environment to make its goal impossible.) By chaining modules, as shown in Figure 3.1, so

that the postconditions of one action satisfy the preconditions of the next one, then we know that

the second will complete successfully. This allows us to decompose the analysis of the behavior.

Algorithm 3.1 HIGH-LEVEL-ANALYSIS
Require: Module m

for all sub-modules s ∈ m do

Output[s] = PN-ANALYSIS(s)

P(Output[s]i|Input[s]j) = ANALYSIS(s)

end for

Verify that Precondition[FirstModule(m)] is satisfied by Precondition(m)

for all sub-modules s ∈ m do

Use PN-ANALYSIS(m) to find what outputs go to s’s inputs, 1(Input[s]i|Output[q]j)

Verify that Precondition[Input[s]i] is satisfied by Postcondition[Output[q]j]

end for

Verify that Postcondition(m) is satisfied by Postcondition[LastModule(m)]

For each sub-module, we both check its pre- and post-conditions and also analyze it to

get the probability of each of its post-conditions. A detailed algorithm is given in Algorithm 3.1.

For instance, in Figure 3.1, we would first analyze the Orient module to determine with what

probability it ends in done and failed. Then, we make sure that the preconditions for Accelerate

match the postconditions for the Orient.done case. Next, we analyze the probability of each of

Accelerate’s outcomes, and so on. Note that this will require checking two different postconditions

of Accelerate: we must make sure that if the ball is distant, the postcondition matches the precon-

ditions of Cruise, while if the ball is close, then we must immediately match the preconditions for

the Slow module.

However, this simple method is insufficient when concurrency is present. If more than one

module may be active at a time, then we cannot in general trust that they will work as intended,

3.2. MARKOV MODEL ANALYSIS 53

since the actions of one may interfere with the other. (Remember that the world, in the worst case,

may be completely coupled, so every action taken affects every variable.) Instead, either we must

show that the co-active modules do not interfere, such as by showing that the actions each emits do

not affect the variables the other monitors, or else we must perform another low-level analysis to

see how the modules work together. We can identify which modules may be co-active via ordinary

Petri Net reachability techniques, including conservation analysis. Then, having identified the

groups that may operate simultaneously, we will analyze each of these groups with the low-level

behavior analysis techniques described in the rest of this chapter. This modified algorithm is given

in Algorithm 3.2.

Algorithm 3.2 HIGH-LEVEL-CONCURRENT-ANALYSIS
Require: Module m

Use PN-ANALYSIS on m to find all sets S∗ of concurrently-active sub-modules

Construct m′ identical to m but with one sub-module corresponding to each Si

return HIGH-LEVEL-ANALYSIS(m′)

So, that is the recursive case for analyzing hierarchical behaviors. Now, let us turn our

attention to the methods used for analysis of lower-level components.

3.2 Markov Model Analysis

Together, the environment and behavior comprise a stochastic system. The environment

moves in random ways, and the behavior moves in deterministic ways. Importantly, these changes

only depend on these components’ current state, not on past state. That means that for the full

system, the Markov property holds—its new state only depends on its previous state. So, we can

construct a Markov model of the full system, including both the environment and the behavior.

Thus, we reduce our complex system to one that is quite analyzable and has been thoroughly

studied. [15]

This most exacting analysis method, which requires the most detailed environmental

description, also produces the most rigorous analysis. That detailed statistical description of the

environment gives us useful guarantees about how our behavior can unfold. The complication is

that the detail that gives us power can also bog us down. Also, in order to make sure that our

model has finite state, we may need to place restrictions on our behavior’s inferential component,

because in general inference may result in continuous state. However, before discussing those

issues, let us directly explore this method.

3.2. MARKOV MODEL ANALYSIS 54

Environs

Beliefs

Actions

e

b

a

e

b

a

t t+1

s s

Figure 3.2: The Markov process model of our agent in its environment. On the left, you see the

general ways in which the three components affect each other. On the right, you see the temporal

relations between these three components, not quite fully connected, which together make up the

full state s.

3.2. MARKOV MODEL ANALYSIS 55

Because our Markov process is composed of more than one interlocking component (the

environment and the agent’s procedural and inferential components), its transition probabilities

may be computed from those of the individual components. The full process, S, is composed

of those three components: E (environment), B (belief/inferential), and P (procedural). In

particular, in every time step, the environment changes according to some distribution that de-

pends on its previous state and the actions taken, which are determined by the procedural state:

P(e(t+1)|e(t), p(t)). Similarly, the inferential component updates its state based on its previous

beliefs, the observations from the environment, and the actions taken. It does this possibly in

a deterministic way, but that is generalizable as the stochastic update P(b(t+1)|b(t), e(t+1), p(t)).

Finally, the procedural component shuffles some tokens based on the inference and the direct (re-

flexive) environmental inputs, moving it into a new state. Again, this may be deterministic, but

we may generalize it with the stochastic distribution P(p(t+1)|p(t), b(t+1), e(t+1)). Then the update

over the full state is just the product of these three factors, so

P
(
s(t+1)

∣∣∣s(t)) = P
(
e(t+1)

∣∣∣e(t), p(t)
)

P
(
b(t+1)

∣∣∣b(t), e(t+1), p(t)
)

P
(
p(t+1)

∣∣∣p(t), b(t+1), e(t+1)
)
.

Equivalently, we can rewrite this in terms of transitions between full states si and sj .

P (sj |si) = P
(
e(sj)

∣∣∣e(si), p(si)) P
(
b(sj)

∣∣∣b(si), e(sj), p(si)) P
(
p(sj)

∣∣∣p(si), b(sj), e(sj))
A Markov process may be analyzed by describing the distribution over its states as a

vector. [15] Specifically, if we have a Markov process with a state s ∈ s1, s2, . . ., then we define

π such that πi = P(s = si). Similarly, we can construct a matrix M such that Mij = P(s(t+1) =

sj |s(t) = si). Then, we compute transitions over time as π(t+1) =
∑

s(t) P(s(t+1)|s(t))P(s(t)) =

Mπ(t). That gives us the happy result that P(s(t)) = π(t) = M tπ(0). In this way, we can calculate

future distributions very easily. Note: to calculate just P(s(T)), we can do this in O(log(T)) time

by subdividing the matrix exponentiation; or, we can get all {P(s(t)) : t ∈ {1, . . . , T}} in time

O(T).

Now that we have captured the basic structure of our behavior, let us also include its

outcomes. We make our goal and failure states absorbing, P(s(t+1) = s|s(t) = sg) = 1[s = sg].

Then, we can calculate the probability that the goal is achieved, limT→∞ P(s(T) = sg), as the gth

element of limT→∞M
Tπ(0). (In practice, we can approximate that infinite limit by some finite

T .) Thus, by a series of matrix operations, we can analyze our behavior precisely and determine

how likely it is to succeed. This analysis will work for any behavior and environment with finite,

discrete states.

This method has some noticeable advantages. First, we can use it to analyze any behavior

with a finite state; we need not restrict ourselves to any particular formalism, such as Petri Nets.

3.2. MARKOV MODEL ANALYSIS 56

Second, because it puts tighter restrictions on the environment, it also provides stronger claims

about the results of the behavior. Indeed, it gives an exact accounting for the results of the state

that is perfectly correct (if the environment is actually as described). Finally, it can be performed

in an entirely automated way, requiring no human assistance for analysis.

There are two main drawbacks to this analysis method. First, it requires a very detailed

description of the environment, which may be difficult to obtain for real environments. Not only is

it hard to obtain, but if that description changes slightly, we must re-do our analysis. If we prove

something about a behavior using less restrictive assumptions about the environment, then it will

apply to many environments; however, that will not be the case when we define the environment

so strictly. Therefore, in §3.2.2, we explore a version of Markov analysis that works on a whole

range of environments at once.

The second main drawback of this method is that it has complexity O((|E| |B| |P |)2).

On the one hand, that seems to be merely quadratic. However, if any of those components can

be subdivided, then the size of the component is the size of those components’ full cross product,

which is exponential in the number of sub-pieces. For instance, if the environment E contains

n variables that can each take m states, then |E| = mn. We can combat this growth by taking

advantage of independences between these variables, in the same way as people use independences

to make belief propagation efficient, and that is explored in §3.2.1.

3.2.1 Complexity and Subdivision

Suppose that the environment is described by a dynamic Bayes net that contains several

groups of variables. The variables in each group are dependent on each other, but independent of

the variables in the other groups. Write e for the full environment state, and e(j) for the state of

the jth group of variables. Then the probability of the full state may be decomposed, so

P(e(t+1)|e(t)) =
∏
j

P(e(t+1)
(j) |e

(t)
(j))

However, when we add in the action of the agent, these groups of variables may become coupled.

For instance, suppose that one action the agent takes affects a variable in both of two groups of

variables. Then we cannot simply decompose the probability into this product, because the vari-

ables are not independent. Therefore, we must assume not only that these variables are decoupled

in the environment, but also that they are decoupled even given the action of the agent. Similarly,

we may extract decoupled components of the agent’s procedural and inferential systems. If this

condition of independence holds, then we can analyze each of those components in isolation. In

this way, we can decompose a complex analysis into several simpler analyses.

3.2. MARKOV MODEL ANALYSIS 57

Now, this is a stronger independence than required in Bayesian inference. After all, in

Bayesian inference, we may divide variables into groups (“cliques”) that are independent of other

variables given an interface. Then, we can use an algorithm such as the junction tree algorithm

[38, 47] to do inference, with the time dominated by the size of the largest clique. That means

that the inference cost does not grow exponentially with the number of variables, just with the

size of the biggest clique. At first glance, it seems like this same technique could be applied here.

However, it turns out that during temporal inference, clique-based methods do not work

as well as they do in fixed Bayesian networks. The problem comes because during temporal

inference, we keep eliminating variables from the past. After all, we do not want to keep them

around indefinitely, as then the inference cost would grow over time. But, as we eliminate those

variables, the previously indirect connections between current variables become explicit, increasing

the size of the present’s cliques. This process can only extend so far, and eventually it converges to

some stable limit. Unfortunately, that limit includes explicit connections for all related variables,

meaning that only very strong independence, such as described above, will help. So, techniques

for doing inference in DBNs have the same complexity issues as the methods given here. [69, 59] 1

Also, note that because the environment variables are coupled not only through the

environment’s DBN but also through the behavior, we cannot necessarily use arbitrary methods

for DBN approximate inference. This additional coupling makes the problem noticeably more

complex. This makes exact and sampling methods much more appealing.

3.2.2 Bounded Markov Process Analysis

One main drawback of the Markov process analysis given above is that it requires a

very detailed description of the environment. In particular, we must know all the environment

transition probabilities, P(e(t+1)|e(t), p(t)), with great precision. In reality this is rarely the case;

in fact, the Markov process is likely to be an approximation of the underlying physical system.

Instead, it would be better to perform such an analysis to show success over a whole range of

possible environments, so that as long as the environment is similar to our approximation, we can

be assured of success.

So, suppose that instead of using the precise transition probabilities P(s(t+1)|s(t)), we

know bounds on these probabilities. For instance, we might have transition probabilities bounded

by L and U :

∀i,j Li,j ≤ P(sj |si) ≤ Ui,j
1Note that it may be possible to define factorable distributions (or approximate factorable distributions, via

variational methods [40]) that make inference feasible even in the case of some kinds of dependencies.

3.2. MARKOV MODEL ANALYSIS 58

We can still analyze this situation, too. After all,

P(reach goal|si) =
∑
j

P(reach goal|sj)P(sj |si)

≥
∑
j

P(reach goal|sj)Li,j

Then, we will use the same matrix analysis technique, but with a new matrix based on

the bounds. Construct a new matrix N such that ∀i,jni,j = Li,j . Then, define a new state su

to represent an unknown state and expand N to have a row and column for u. Define transition

probabilities for u by setting ∀ini,u = 1−
∑

j Li,j and nu,u = 1. (This makes sure that N represents

transition probabilities that sum to 1, which is necessary for useful analysis.) Now, we compute

a lower-bound distribution l(∞) = N∞π(0) that gives a lower-bound on the final distribution of

states. That is, P(end in state j|π(0)) ≥ l
(∞)
j . We will also end up with a probability mass we do

not know how to distribute, l(∞)
u . We can use this to also provide upper bounds on the probability

of outcomes, since P(end in state j|π0) ≤ l(∞)
j + l

(∞)
u .

So, we can analyze our behaviors even for ranges of environment descriptions. This makes

analysis stronger because we can prove effectiveness once, and have that analysis hold even if the

environment changes. An important side effect of this is that it makes our analysis apply even for

real, physical environments, where transition probabilities must be measured or even estimated.

Then, even if we are not entirely sure of our environment parameters, this method can give useful

guarantees anyway.

3.2.3 Discrete Inference State

In order to write a transition matrix for the states of the Markov process made by the

environment and a behavior, we require a finite number of states. The environment, composed of

a dynamic Bayesian network of finite, discrete random variables, has a finite state. Similarly, the

Petri net procedural component of the behavior has finite state, since its state is made up of places

with finite, discrete numbers of tokens. Unfortunately, the inferential component of the behavior

can in general have infinite state.

That infinite state may seem surprising. After all, the inferential component has the same

structure the environment: it is a dynamic Bayesian network. However, while the environment’s

DBN is used in a generative way, assigning variables random values, this one is used for inference.

The agent does not just keep known values of variables—it keeps inferred distributions of variables,

based on all the evidence seen in the past. Those distributions are usually continuous quantities,

since even a binomial distribution has a continuous parameter describing the probabilities of the

3.3. SAMPLING ANALYSIS 59

two outcomes. This is the same problem that makes solving POMDPs so complex; the state space

may grow in a way that can flummox simple algorithms [42].

There are three main solutions to this problem. First, we can act as though the environ-

ment variables the behavior relies on are known. After all, when we are analyzing the behavior,

we are tracking the full state of the environment, so we really do know those variables’ values.

However, this will lead to unfortunate outcomes of the analysis, where we are analyzing a behavior

that knows much more than it would if it was acting in the real world. This is almost certainly

a mistake in all but the most easily observed environments, where this difference in inference

requirements does not matter much.

The second solution is to restrict the inference component’s state representation. Instead

of letting it track continuous distributions, we can discretize its state space. After all, the inferential

component only affects the behavior by enabling or disabling transitions at certain thresholds, and

we know those thresholds. We can make discrete state spaces based on those boundaries and use

those to approximate our agent’s behavior in the world. That approximation will sadly not be

perfect, but it can still produce useful analyses.

The last solution is to use a more flexible sort of model. Our analysis need not use a

discrete Markov model—there are also continuous Markov models. For instance, it is easy enough

include one or more Gaussian random variables. That is, in fact, the basis of Kalman filtering.

That will change some of the Markov analysis method described above, since we will now track

some Gaussian components. These will also be approximations to the behavior’s true belief state,

so they will not quite duplicate the behavior of our agent in its true environment. Still, that allows

a sort of inference that will be useful in certain conditions.

3.3 Sampling Analysis

When an exact analysis grows too complex, it is still possible to approximately analyze

a stochastic system. Simply by sampling from the statistical model, we can explore the parts of

the system that are likely, while ignoring much of the irrelevant complexity. That way, we can

focus our analysis on the parts we care about and at least get statistical guarantees on our system.

Sampling analysis is therefore useful for checking the effectiveness of our behaviors.

In our case, our behaviors are deterministic given their inputs, so the randomness comes

only from the environment. The environment, recall, consists of random variables that depend on

each other and on the agent’s actions. We have a description of their relations and distributions,

which are given by the PRM portion of our model. We can use this description to sample the

3.3. SAMPLING ANALYSIS 60

variables of the environment. Having sampled the environment variables, of course, production of

the behavior is very simple—just simulate it, letting it see the observed variables we sampled. As

we move forward in time, we will need to sample future time steps in the environment; we then

condition these variable choices on the existing variables and on the behavior, as needed. There

are a variety of sampling methods, including Gibbs sampling, particle filtering, and others. See

[24] for a detailed discussion of many of them.

For our analysis purposes, we only care about the possible outcomes once the behavior is

complete. That is, we care most about whether a module is successful or not, not what particularly

happens within the behavior. Therefore, the standard results for multinomial sampling apply. We

have m outcomes, each occurring with probability pi. The unbiased estimate of pi is p̂i = ni/n,

where ni is the number of times outcome i is observed, and n is the total number of samples.

According to [72], with probability α, we can bound the true pi by a function of p̂i:

p̂i + 1
2nz

2
1−α/2 ± z1−α/2

√
p̂i(1−p̂i)

n +
z2
1−α/2
4n2

1 + 1
nz

2
1−α/2

where zα is the α percentile of a standard normal distribution. This bound is good even when pi

very close to 0 or 1, which is important, since very often we are interested in error cases that happen

extremely rarely. There are also other bounds that might be useful in other circumstances—[3]

give a comparison. So, to obtain a sufficiently tight bound on the probability of success, we need

merely sample a sufficient number of times to drive down the variance.

3.3.1 Backward Sampling

Forward sampling, though simple, is at its worst when trying to calculate accurate proba-

bilities of unlikely events—and if our behaviors are effective, failure outcomes should be extremely

unlikely. That makes these sampling methods less than ideal for our problem. Instead, since

we want to focus on the chances of low-probability events, we should condition on those unlikely

events, by setting that as evidence, and sample for likelihood based on that.

That is, we will do sampling in reverse by treating an error condition of the target module

as evidence. Then, conditional on that conclusion, we go backward in time, sampling earlier

possible environment and agent execution traces. From those samples, we may then estimate how

likely that error condition is. This will give a more accurate estimate for unlikely cases than will

pure forward sampling. Such reverse sampling is not entirely a simple problem, but it has already

been studied, especially as it applies to smoothing time series [59, 30, 6].

3.4. HAND-WROUGHT ANALYSIS 61

3.4 Hand-Wrought Analysis

The most general but labor-intensive analyses are those produced by humans. Such an

analysis may be applicable over a wide range of environments and behaviors. However, each such

analysis will likely be different, so I can only give a general framework and specific examples here.

Only the modules that directly interact with the environment would require a proof like this, as

higher-level modules can be analyzed as a composition of their components.

The general hand-analysis framework is based on the use of an error metric, much as is

done in control theory [67]. First, we define an appropriate error metric that will be a proxy for

the goal conditions. In particular, it will be below some threshold only when the goal conditions

are met. As such, it may be a composition of different error metrics for each of the goal conditions.

Then, we show that this metric is improved in every time step, by an amount sufficient to cause

it to eventually go below the target threshold. Unfortunately, showing this reduction may be

impossible in some circumstances. For instance, if the agent has momentum away from a target,

more than it can reverse in a single time step, then in the next time step it will have a higher

distance from the goal.

Therefore, it is often advantageous to define a set of bounds on state variables that our

behavior maintains—bounds that guarantee an error reduction. Then, we show two things: that

the error decreases, and that the bounds hold at the end of each time step. In particular, the

bounds must satisfy the following conditions:

1. these bounds are maintained by the behavior in every time step

2. given these conditions, the error metric is reduced in every time step

3. the goal state satisfies these bounds

So, if we just derive appropriate bounds and show that these conditions are satisfied, then this

will show that our behavior reaches its goal state, given that its initial conditions lie within the

bounds.

To show how this hand-analysis is used to guarantee the success of a behavior, there is

an example in Appendix A.

62

Chapter 4

Recovering from Surprises and

Interruptions

One unfortunate fact of the real world is that things do not always go as we would like

them to. Sometimes, things that we never could have imagined surprise us and send awry even

our best-laid plans. For instance, our soccer-playing robots could be interrupted by a second ball

getting loose on the field, by getting caught on another robot, by a hardware malfunction, or even

by an earthquake. More commonly, they might encounter situations where their expectations of

the future were simply wrong. Perhaps they encounter a team using a brand-new strategy, or

accidentally kick the ball somewhere unusual. Some of the above issues are outside the scope of

a soccer-playing behavior, but for those that permit the game to continue, our robots’ behavior

must not break down just because something unexpected happened.

For the simplest sort of agent, a purely reactive one, an interruption is only a problem

if it gives the agent inputs it was not designed for. As soon as it again sees familiar inputs, it

can take the appropriate action. However, because the environments we are considering are too

complicated for such simple behaviors, and the agent instead keeps careful track of the things it

has perceived, determining which observations are obsolete and which are relevant can be tricky.

Fortunately, we can take advantage of the fact that our agent does not need to entirely understand

its environment to make useful actions. Instead, it can often do something productive based only

on its local information while its model is out of date. Such actions will not be optimal, but they

will be better than simply giving up entirely or continuing as though there had been no disruption

of the environment.

The things that go wrong, sadly, are far too many to try to handle each one separately—

after all, there are many that are impossible to even anticipate. Therefore, instead of trying to

4.1. MACHINERY 63

recover from every possible interruption differently, we use a set of safe states that are simple

and locally defined. Such a safe state is a stable situation from which the agent can consider and

then begin a new action. So, when it encounters a problem, it attempts to reach one of those safe

states. We label those states safe states, and we use the word recovery to mean the process

that is initiated upon error detection and ends in such a safe state.

When something untoward happens, the agent then attempts to use local information

to retreat to one of these safe states. There, it may reconsider its plans and gather additional

information from relative safety. Note that safe states need not be static; they can be quite

dynamic. For instance, a safe state for a bicyclist will involve some forward motion, which is

needed to provide balancing stability. This forward motion also necessitates some sort of steering,

so the we see that the safe state is a process, not a fixed position.

Recovery involves two components. First of all, our agent must produce actions to try to

move the outside environment to a safe condition. It must also set its internal state to one that now

reflects the true state of the world. This may require letting go of some assumptions and rebuilding

parts of its internal models. Most of all, it will require abandoning partially-completed behaviors

that are no longer useful. Therefore, we need a way of cleaning up its internal representations of

incomplete actions.

4.1 Machinery

Within a given behavior or module, when our agent encounters an error and must quickly

reach a safe state, it must abandon possibly concurrent parts of its current behavior. In order to

simplify this recovery process, we once more extend the standard Petri Net definition. In particular,

we introduce set arcs. These arcs, which go from transitions to places, have the distinct property

of setting their outputs to values specified by the arc weights, rather than modifying them by

those amounts. This makes it very easy to reset large parts of the network at once, simultaneously

abandoning multiple concurrent activities. For instance, in Figure 4.1, the recovery transition uses

set arcs to set all the places in the module when an error is discovered.

Note that for any recovery transition with set arcs, this same setting-of-places effect could

be achieved by the introduction of a particular collection of other places and transitions. That is,

there is an equivalent Petri net without set arcs that would still cause the target places to end up

with the right number of tokens. So, the set arcs do not change our representational power; any

combination of effects they could describe are already feasible with the existing model. However,

by allowing a simpler description, they make any sort of representation manipulation much more

4.2. MODULES 64

face
target

ready
to turn

kick

facing
target

kicked

check for
obstaclesready to

check
checked

intend
to kick

begin

0.1

0.3

error
detected

recovery
begunbegin

recovery

0 0

00

Figure 4.1: Here, set arcs from the begin recovery transition put the entire module into the desired

state.

feasible. So, this simplification effect makes it easier to create networks, whether by design or by

learning, and also to analyze them.

For example, in Figure 4.2, we can see how the previous example (Figure 4.1) could be

created without any set arcs. It uses inhibitory arcs to stop the progress of the network, plus one

transition for each place to reset that place. However, it is a much more complex structure, and in

the event of any changes to the basic structure of the network, it will have to be heavily modified.

Furthermore, that complexity also makes it more difficult to analyze.

4.2 Modules

Recall that the behaviors we use are deliberately designed to be hierarchical. For instance,

the “pass” behavior may use the lower-level “kick” behavior without relying on any detailed knowl-

edge about how kicking is done. Because of this compartmentalization of skill, errors will often

be detected at the behavioral level they affect. If our agent loses control of the ball, that will first

affect the low-level “kick” behavior. If an opponent covers the player our agent was going to pass

to, that will instead affect the higher-level “pass” behavior.

So, error detection may be needed in any module. But, because the low-level behaviors

4.2. MODULES 65

face
target

ready
to turn

kick
facing
target

kicked

check for
obstaclesready to

check
checked

intend
to kick

begin

0.1

0.3

error
detected

recovery
begunbegin

recovery

Figure 4.2: Here, we see how the recovery in Figure 4.1 could have been performed without set

arcs; however, this is a much more unwieldy graph and will be harder to work with.

are only useful in the right context, and the high-level behaviors will be affected by the failure of

low-level components, error and recovery information must propagate up and down through the

behavioral hierarchy. Therefore, it is important that modules not only have “start” and “end”

places in their interfaces, but also “abort” and “failed” places. These allow the needed sort of

signals to be transmitted.

Of course, there may be more than one kind of failure, and the type of sub-behavior

failure will affect how the higher-level behavior recovers. If the kick fails because an opponent

stole the ball, then the pass behavior should give up. However, if it fails because the robot’s leg

simply missed the ball, then retrying the kick might be best.

These recovery mechanisms share a lot in common with the exception handling in modern

computer languages, and that should not be surprising—after all, these two domains share common

goals. In both cases, we want to identify errors where they are most relevant but handle them

where appropriate action can be taken. Then, based on exactly what the situation is, the module

either recovers immediately or informs higher-level components about the problem. The difference

between these two error-handling schemes is that our action representation is inherently concurrent,

while computer languages are made for describing serial processing schemes. That is why, in our

action representation, error information may also flow down to low-level components. These simpler

4.3. EXAMPLES 66

.

Figure 4.3: The high-level structure for a behavior which passes the ball back and forth, advancing

on the opponent’s goal, and eventually shooting once the goal is close enough.

behaviors may need to abort or change their operation based on errors that occurred beyond their

own scope. Note, however, that this part of the error-handling scheme does not require any new

representational capability. Instead, it simply requires a straightforward expansion of the existing

hierarchical structure.

4.3 Examples

Here, I present the example of a soccer behavioral network with added recovery compo-

nents. It is a behavior that passes the ball to its teammate, moves forward, and eventually shoots

on the opponents’ goal once close enough. The high-level behavior is given in Figure 4.3.

This high-level structure is built out of many sub-networks. They range from relatively

simple ones, such as setup, to more complex ones, such as receive. The basic structure is simpler

than the diagram makes it seem. The player repeatedly passes the ball to its teammate, then

begins watching the ball as it runs forward. When it has gotten to the desired forward location, it

waits to receive a pass. Once it has received the ball, it starts the cycle again and passes back to its

teammate. The additional complexity of the network is largely due to its error recovery systems,

4.3. EXAMPLES 67

.

Figure 4.4: The low-level behavior to pass the ball to a teammate. If the distance to the ball grows

too high while it orients toward the teammate, it recognizes this and goes to the failed state.

which are described in detail below.

4.3.1 Passing the Ball

As a simple example of error detection and recovery, consider the low-level pass network,

shown in Figure 4.4. First, let us understand its basic structure. It has a main path where it

repeatedly turns to see the target, if it does not yet, then turns directly toward the target, and

finally kicks the ball. It loops on the turning to face the target, doing so twice because the soccer

environment introduces error proportional to the turn size, so the second, smaller turn is much

more precise.

However, while the player is getting ready to pass the ball, something could happen, such

as the ball drifting away or an opponent stealing it. The pass network, however, is not designed to

take corrective action in such cases—what should happen after such an event is beyond its scope.

Instead, it simply checks for the error and, if it finds it, goes to the failed state. That way, the

higher-level behavior can deal with it appropriately.

A different error could occur during passing. After kicking the ball, something could have

gone wrong (such as the ball being stopped by an obstacle), and the ball would not be moving

away. In that case, the kick would not be successful, but again the pass network itself would be

4.3. EXAMPLES 68

unable to take appropriate action. Therefore, in this case also, the network goes into the failed

state.

Note that this network makes use of only a single set arc. It uses that to reset the internal

counter for repeating the turn. If it did not reset this counter, then the next time the pass network

was used, it would start in an incorrect state. However, it only needs one set arc because most of

the state does not need to be reset.

So, now we know that upon detecting an error, the pass network passes it up to a higher

level; what does that higher level do with that information? As we see in Figure 4.3, the higher-level

behavior takes the token from the pass’s failed place and activates the go to ball low-level behavior.

So, having lost the ball for one reason or another, the high-level network relies on an appropriate

other low-level behavior to handle the problem. An equivalent way to view this recovery situation

is that the agent attempts to reestablish a safe state: possessing the ball. When the error occurs

in the low-level behavior, it relies on the high-level behavior to successfully navigate that path to

safety.

4.3.2 Advancing down the Field

Another example problem recovery situation can be seen in Figure 4.5. This is a simple

enough behavior that nothing can really go wrong. The player just keeps moving toward a given

destination. If it gets off course, it turns itself to get back on course; if it remains on course, it

emits dash commands to keep its velocity up. Therefore, it does not detect any error situations

and does not initiate any recovery.

However, this low-level behavior may become inappropriate if something changes else-

where. Suppose that the destination is no longer appropriate, or that the player needs to stop

running in order to do something else. Therefore, this network has an abort input that immediately

shuts down all activity here and sets the aborted output. It does this by using set arcs to reset

the internal state of the network. Its safe state is simply not moving—when something happens,

the player’s first response must be to cease its previous motion. As we see in Figure 4.3, this abort

signal is sent when the watch ball network detects that the ball is coming toward the agent. Then,

the agent’s appropriate action is to ready itself to receive the ball, so it also sends the begin signal

to the receive low-level action.

4.3. EXAMPLES 69

.

Figure 4.5: The low-level advance behavior, which moves forward to a new position. It does not

directly detect errors, but it may be aborted if other conditions change elsewhere.

4.3.3 Keeping Watch on the Ball

It is relevant to inspect the error-detection component of the watch ball network, seen in

Figure 4.6. This network runs concurrently with active behaviors such as advance and receive, and

its goal is to keep the ball in view and to alert the other modules when the ball is coming. Thus,

whenever it sees the ball approaching the player with a sufficient velocity, it sets the ball coming

output place, so that the high-level network can use this information appropriately to control the

active behaviors also underway.

Also, because the watch ball behavior has no obvious internal stopping point, and it is

hard to know exactly when to stop watching the ball and start watching something else, it leaves

that control up to the high-level behavior. That high-level behavior stops watching the ball once

it has received the ball. Then, it sets the stop input of the watch ball network. This induces

the watch ball network to reset its internal state and mark the stopped output, thus letting the

high-level behavior know that it stopped successfully.

4.3. EXAMPLES 70

.

Figure 4.6: The low-level behavior for watching the ball. This behavior is run concurrently with

more active behaviors such as receive and advance.

71

Chapter 5

Results

In the chapters above, I have described a new architecture for dealing with complex, real-

world actions. Being designed to capture both the structural properties and the needed inferences

of actions, it is built on two existing components, Petri nets and Probabilistic Relational Models.

These components, especially the Petri nets, were modified to become a better match for the

requirements of real-world, real-time, complex actions. In particular, the Petri nets received added

modularity, mathematical mappings, and direct world interface mechanics. I fit the two pieces

together in such a way that each could view the other in its own terms, meaning that the internal

mechanisms for each were maintained without modification. This required additional extensions

for using PRM objects as tokens in the Petri net, as well as controlling which relations are active

in the PRM. Furthermore, I provided additional extensions to allow simple recovery from errors.

Also, by taking advantage of the existing analysis methods for each component, I de-

veloped combined analysis methods for the combined architecture. These methods can show the

correctness and effectiveness of actions, embedded in their environments. They not only take

advantage of the individual analysis tools for the two components, but they also draw on the

hierarchical structure of actions to simplify the analysis. In order to make analysis as useful as

possible, I include methods optimized for varying degrees of environmental complexity, including

both direct and approximate analyses.

Here, I discuss the results of this architecture: its implementation, demonstrations, and

comparisons to a set of baselines.

5.1. IMPLEMENTATION 72

5.1 Implementation

The representation described here has been implemented and demonstrated. The imple-

mentation is based on existing open-source tools for manipulating both Bayes nets and Petri nets.

It was written in Java in order to best take advantage of such tools. It is built upon a foundation of

Bayesian Network tools in Java (BNJ) [37] and the Platform Independent Petri net Editor (PIPE)

[8, 9]. These tools each include both a backend (simulator/inference engine) and a graphical user

interface (GUI). The software is available at http://soccer.barrettnexus.com/. It uses ATAN [39]

to communicate with the RoboCup 2D simulator.

However, each of these tools required modifications to match the requirements described

above. That is why it was important to work with open-source tools like these: that way, they were

exposed to the tinkering I required. BNJ was extended with support for inference in temporal Bayes

nets, and it also received substantial work to allow it to handle objects, broadening its inference

capabilities to cover Probabilistic Relational Models. Similarly, PIPE was heavily adapted with

the extensions in §2.2.1; PIPE itself can handle only Petri nets with ordinary, test, and inhibitory

arcs.

Of course, there was major implementation effort in connecting the components. Nei-

ther package was originally designed to work with the other, and they had to be very intimately

connected to each other and also to ATAN as a bridge to the RoboCup world. The core of this

interaction was provided by adding alternate types of Petri net places and Bayes net random

variables that are actually links to the other representation. That way, whenever the Petri net

needs the value of a place that is equivalent to a random variable, it automatically queries it, and

similarly for the Bayes net’s access of place-equivalent random variables.

In order to make the resulting software easy to use, the graphical user interfaces were

also adapted. Because they were built using different user interface toolkits, they could not be

completely integrated. Instead, the user interface consists of two separate windows. In one, the user

may modify the Petri net structure; in the other, the user may affect the probabilistic relational

model. This interface was used to construct all the example behaviors.

It should be noted that as a preliminary effort to the complete implementation, a simpler

version with hybrid (discrete/continuous) Petri nets and Bayes nets was created work with Alberto

Amengual [4]. This simpler tool was used to model the behavior, particularly attachment behavior,

of children in a psychological experiment. This initial work was an important stepping-stone to

the complete architecture.

http://soccer.barrettnexus.com/

5.2. DEMONSTRATION 73

5.2 Demonstration

In order to demonstrate both the ideas of this architecture and its implementation, I

have produced real behaviors using it. In this dissertation, I have presented three examples in

the RoboCup robotic soccer domain. They form a series increasing in complexity, with each

showcasing a particular aspect of the architecture. Although it is difficult in a text like this to

adequately describe the effectiveness of these demonstrations, recordings of the example behaviors’

performance are available at http://soccer.barrettnexus.com/demo.

The first demonstration, in §2.2.7, showcases the use of Petri nets to structure action. It

consists of an agent that passes and receives the ball, dribbles the ball, and shoots on the goal. It

does not use the probabilistic relational model components of §2.3, nor does it use the recovery

machinery of §4.1. Instead, it forms a structured behavior by using the Petri net’s internal state to

use past inputs to affect current actions. By splitting the network into modules, it demonstrates

a hierarchy of actions, which keeps the states for various sub-activities compartmentalized into

related chunks. It also uses the procedural structure to track what goals and actions it should

pursue at any time.

The second demonstration, shown in §2.3.5, focuses on the added abilities of the proba-

bilistic relational model. This example is the behavior for a goalie who watches the ball alert for

danger and, when the ball is incoming, moves to block it. Again, it contains a modular procedural

structure, but now it also relies on its inference mechanisms to combine its noisy sensor data into

inference about hidden parts of the world. For instance, it tracks the ball and its opponents,

identifies when an opponent possesses the ball, and uses that information to predict the future

position of the ball.

The third and final demonstration, in §4.3, extends all of these ingredients by highlighting

the recovery system of this architecture. This complex multi-agent behavior passes the ball back

and forth, advancing down the field until in range to shoot on the goal. Despite its use of the

probabilistic relational model, the noise in the world can make precisely passing and stopping the

ball difficult, so there are many possible errors that could occur. This behavior uses the recovery

machinery of §4.1 to detect these error conditions and move to safe states, from which it can

continue its advance on the enemy goal.

http://soccer.barrettnexus.com/demo

5.3. BASELINE COMPARISONS 74

5.3 Baseline Comparisons

In order to show the value of this architecture, we require comparisons against other

systems, or if there are no other systems in quite the same domain, at least comparisons against

baselines. By showing that our architecture is at least as capable as the competing systems on the

test domain of RoboCup, we could establish its value. However, this architecture targets a new

problem and thus falls in the latter category, so we must examine possible baselines. I argue that

the reasonable baselines to compare against are either subsumed within this architecture or fail to

possess some critical advantages of this architecture.

There are several baselines for useful behaviors, such as those activities needed in the

RoboCup domain, that might be relevant. For instance, we might represent structured behavior

with finite state machines [33], or we might use concurrently operating finite state machines,

such as those of the subsumption architecture [11, 12]. On the other hand, to better exploit an

understanding of the environment, an alternate baseline is to use a Bayesian network to infer

world state and map that state to output actions [62]. Finally, we might imagine not a simplified

baseline, but a complex one: a parallel computer language.

Each of these baselines is particularly relevant because of its relationship to the architec-

ture presented here. However, those relationships also make it possible to see clearly the similarities

and differences in abilities by inspection and argument alone. Here, I will discuss those relation-

ships.

5.3.1 Finite State Machine Baseline

One main requirement of a useful behavior is to produce appropriately structured actions.

The naive way to create the structure of an action would be to create a finite state machine [33]

for it. One could specify outputs along arcs, and inputs would change which arcs are possible from

each state. With this, it would not be too difficult to script out some simple RoboCup soccer agent

behaviors. Thus, the first baseline to consider is that of a finite state machine.

However, such a simple finite state machine model is a vast oversimplification. In fact,

it is completely subsumed by the architecture described in Chapter 2. In particular, a Petri net

can depict a finite state machine [58]. All that is needed is to have only one input arc and one

output arc (both with a weight of 1) per transition, and to initialize the state with a single token.

Then, that Petri net is exactly equivalent to a finite state machine, with states of the FSM being

identical to places in the PN. So, the architecture I present here completely contains the finite

state machine baseline.

5.3. BASELINE COMPARISONS 75

Figure 5.1: A finite state machine is equivalent to a Petri net where each transition has one input

and one output arc.

Over-representing another tool does not imply superiority. After all, important properties

may be lost with increased complexity. For instance, a Turing machine subsumes finite state

machines, but cannot be analyzed as can PNs and FSMs. Considering that, the finite state

machine is still inferior for our task—it cannot be analyzed significantly more effectively than a

Petri net.

Also, the FSM baseline can only describe concurrent activities by giving the full cross-

product state space of both together. Now, that particular disadvantage of lacking concurrency

has been addressed before. Specifically, the subsumption architecture has used multiple interacting

concurrent finite state machines [11, 12]. However, even this does not fix all the flaws. First of all,

that is a noticeably weak form of concurrency—after all, this is essentially a less-principled sort of

Petri net, and is again subsumed by, and less analyzable than, the Petri net.

Furthermore, this purely procedural representation lacks any understanding of its envi-

ronmental. In order to use previous observations, which may be important clues to unobserved

components of the environment, to affect future actions, it is necessary to store that information

by keeping the FSM in an entirely different state until that information is needed. The result is

again an explosion of state space, just as occurred when trying to cram concurrency into a single

FSM. Only this quite crude method of shoehorning all the various considerations of past actions,

current actions, and hidden state into the single state value can allow finite state machines to

produce anything close to the required complexity of actions. As a result, a concurrent finite state

machine baseline is also inferior to our method for the demands of a complex environment.

5.3.2 Bayesian Network Baseline

If ignoring the inference required to handle a real environment is a fatal flaw of the finite

state machine, perhaps an inference-centric baseline could be more useful. After all, knowing what

5.3. BASELINE COMPARISONS 76

probability of case 1

pr
ob

ab
ili

ty
 o

f c
as

e
2

action 1

action 2

action 3

Figure 5.2: A Bayesian network baseline maps its inferred distributions into actions.

is going on in the world should be sufficient to choose actions. We could just use a Bayes net to infer

the hidden world state, and then we can map that state into output actions [62]. That is, divide

the possible inferred distributions over world states, which form a multidimensional continuous

state space, into regions. Each region corresponds to the emission of an atomic action, as shown

in Figure 5.2, and other measures over distributions could give parameters for those actions. This

is rather similar to the solution descriptions for partially observable Markov decision problems

(POMDPs) [42, 34]. Note further that if the action regions overlap, then multiple actions could

be output at once, allowing for concurrency.

This baseline has a number of disadvantages, again beginning with the fact that it is

subsumed by my architecture. You could produce exactly the same thing by taking the represen-

tation from Chapter 2 and simplifying the Petri net. Let the regions of distribution space be given

by combinations of places corresponding to random variables; their numbers of tokens are given

by functions of the variables’ distributions, and they may be combined via math transitions to

precisely define arbitrary regions of distribution space. Thus, we can make an exact equivalent of

the baseline in my architecture, as seen in Figure 5.3.

This baseline is still missing crucial elements, though. That is clearly suggested by the

fact that it uses only a few of the components described in this dissertation, but let us examine

its flaws in more detail. First, it may not be able to take swift action. In order to determine

what action to take, it must perform inference to establish what part of distribution space it is

in. In a complex environment, inference may be slow, and many real-world situations require

near-instantaneous actions. After all, humans use reflexes to make important protective reactions

when our cognitive processes may be too slow.

Also, by neglecting internal state, a baseline Bayes net agent will not be able to track

its own intentions and goals. For instance, on an outing into the world, we might find ourselves

5.3. BASELINE COMPARISONS 77

belief-space
region
indicator

belief-space
conditions

action 1

action 2

Bayesian network

Figure 5.3: The Bayesian network baseline that maps belief-space regions to actions can be written

in my architecture.

in identical world states more than once. We might hike out to see a view, and on our return

retrace our steps. When returning, the world state is essentially identical, but we want to move in

a diametrically opposite direction than we did previously. So, we cannot simply base our activity

choices on the world alone.

Note that this second objection might be answered by including random variables to

encode the agent’s internal state. These internal random variables would exist only to reflect the

agent’s plans and goals. However, instead of letting the plans and goals relate and coordinate

only when relevant, they must be related constantly and inferred at all times. Furthermore, this

approach actually worsens the issue of reaction speed; now, the agent must use slow inference to

figure out even what its own state is.

5.3.3 Concurrent Turing-Complete Language Baseline

Finally, though the above baselines are somewhat simple, we might also compare to a

quite complicated option. If our own architecture can do fancy things, we might want to compare

against a fancy baseline. The sensible such baseline would be arbitrary concurrent computer code.

After all, it is certainly capable of describing complex coordinated actions. Indeed, there are no

activities this architecture can represent that code cannot; it subsumes this architecture so fully

that the architecture itself was completely implemented in computer code. Thus, it is not hard

to see that such code must be able to perform actions at least as complex and coordinated as my

5.3. BASELINE COMPARISONS 78

own representation. From this, we might conclude that my architecture, being subsumed, is not

worthwhile.

However, this neglects one significant fact: representation alone is not enough. Although

arbitrary computer code is capable of representing many things and producing many actions, it is

very difficult to analyze. Therefore, the set of analysis methods for a Turing-complete language

will be much smaller than those for my architecture. Because we lack methods for guaranteeing

reachability and an absence of deadlocks, we cannot use the Markov chain analysis methods de-

scribed in §3.2. We can still use forward sampling methods, as in §3.3, but our selection of possible

starting states will be more difficult, as it may be hard to say what states the concurrent code

could be in at the beginning of an activity. Furthermore, since we cannot determine which previous

internal states might have led to the current state, we also cannot use the backward analysis of

§3.3.1 to determine likely causes of errors. The result is that although the representation ability of

computer code is unrivalled, the lack of useful analysis methods is a serious handicap when it comes

to making the guarantees needed for artificial agents to operate in certain critical environments.

Therefore, even this extremely capable baseline representation is not an appropriate comparison.

Having reviewed a set of the sensible baselines, we can see that a side-by-side comparison

of performance metrics is not likely to be useful. Although performance on certain tasks may

be higher with some representations than others, the abilities provided by this architecture fill

an important domain that is not otherwise covered. By carefully matching my architecture to

the demands of real-world actions, I have obtained a result that can perform complex activities in

complex environmental conditions while also permitting a great deal of analysis and proof methods.

This middle ground is the essential one for coordinated artificial agents.

79

Chapter 6

Conclusion

This work is an attempt to fix one of the largest outstanding gaps in the field of Artificial

Intelligence. There is a huge class of problems that are easy for humans and difficult for computers

or robots, and many of these problems revolve around interactions with the real world. Specifically,

any kind of complex task that requires an agent to react to changing conditions rather than merely

replaying recorded actions, that requires simultaneous control of multiple effectors, or that has a

state space too large to search through, is often intractable or nearly intractable to computerized

agents.

Unfortunately for our robots, the real world is replete with these tricky problems. They

range from the mundane, such as cooking an egg or hulling a strawberry, to the exotic and critical,

like performing emergency surgery or fleeing a burning building. Fortunately for us, humans are

pretty good at accomplishing such complex tasks. Why, many humans are even capable of walking

and chewing gum at the same time. However, we have not been able to transfer these abilities to

our mechanical contrivances.

Tackling this problem, like most problems in computer science, requires a new way of

representing our data. Just as some data structures are highly useful for some tasks and terrible for

others (hint: avoid binary search in linked lists), this problem may only be tractable when matched

with an appropriate representation. Such a representation would need to capture commonalities

about complex actions in its very structure. Therefore, my work here has been to develop, describe,

and demonstrate just such a specialized representation, plus a set of algorithms enabled by the

representation, together forming a new architecture for actions. Demonstrations were performed

using the RoboCup [43] robotic soccer simulator.

In this work, as described in Chapter 2, I tackled that problem by combining two separate

representations, each optimized for a different task. In order to describe the structure of actions,

80

using internal state and producing quick reactions, I used a procedural model. To interpret noisy

and tricky inputs into guesses about the state of the world, I included a model for probabilistic

inference. These two components were then combined and extended, so that together they provide

a great deal of leverage to move us forward on complex actions.

In choosing a procedural model, it was necessary to walk a fine line. On the one hand, a

simple model like the finite state machine [33] is not able to handle the complex demands of the

real world. On the other hand, a very complex model, such as a parallel computer language, can

represent what we need but cannot be analyzed, making it very difficult to give useful guarantees

about the effectiveness of actions. The ideal middle ground is the Petri net [63], described in

§2.2.1. This is a standard tool for analyzing concurrent processes, modified here with additions

to make it deal better with the interactive, timed, and continuous aspects of the world. It uses

markings moving around a bipartite graph to describe the progress of an activity, with links and

transitions to describe the concurrent or coordinated steps that may be taken. The result is a

procedural model that can describe quite complex actions and is demonstrated via a RoboCup

soccer behavior in §2.2.7.

The second component chosen, the inferential model, was the Probabilistic Relational

Model [46], an object-centered extension of the well-known Bayesian network [62]. It is superb at

describing the evolution of random processes in the world, usign probabilistic information about

objects with possibly changing relationships. It describes the world as a set of random variables

attached to objects; if a relationship connects a set of objects, then their variables may be in-

terrelated. The dependencies between variables, combined with evidence for the values of some

variables, describe a probability distribution over all the variables. We can then use probabilis-

tic inference [38, 47, 75, 21] to query estimated distributions over the values of some unobserved

variables. Thus, combined with the Petri net, the result is a combined representation capable of

describing both internal progress through an activity and external estimates of the world and the

agent’s affect on the world. This addition to the Petri net was demonstrated in §2.3.5.

Unfortunately, as excellent as these two components are, they do not naturally fit together

extremely well. Thus, some work was required to get them to cooperate. This was done by having

each component view the other in its own terms. To the probabilistic relational model, a Petri net

place is viewed as an observed random variable, which can then have interdependencies on other

variables and thus affect inferred distributions. In this way, an agent can use its knowledge of

its own state and actions to predict effects upon the world. Similarly, the distribution of a PRM

random variable can be mapped into a marking of a place, allowing the Petri net to control its

actions based on its estimate of the hidden state of the world. Thus, the two components help

81

each other accomplish their tasks.

In Chapter 3, I described algorithms that take advantage of the structure of the behavioral

representation to analyze behaviors for effectiveness and safety. Because both of the representa-

tional components are designed for analysis of just this sort, the combined representation is also

amenable to analysis. There are the usual limitations, of course—if the environment contains a

terribly complex process, then analyzing an agent that interacts with it may be as difficult as

analyzing the terribly complex process or at least require some approximation and simplification.

After all, analyzing an agent in a Turing-complete environment could require solving the halting

problem. However, given those limitations, I presented a broad spectrum of analysis methods.

These methods cover a range of precision and complexity, making them appropriate in

different conditions. On the one hand, the behavior can be treated as a Markov model. This is an

exact method, but it may be useless in the face of complex behaviors in difficult environments. At

the other extreme lie sampling methods, which can be used even in the face of the worst complexity,

but which also provide weaker guarantees. I also described tricks to mitigate these methods’ issues.

For instance, there is much to gain by analyzing individual modules, as then these analyses can

be used as summaries to simplify higher-level analysis. Similarly, sampling methods can be used

backwards in time to identify the sources of error conditions, rather than simply simulating forward

until an error occurs. These techniques help make guarantees of behavior quality feasible.

In Chapter 4, I explained how this framework allows recovery from unexpected interrup-

tions. When an agent detects an error, it passes that information up or down the action hierarchy

to an appropriate position to handle it. Then, the agent can retreat to a safe state, which, de-

pending on the environment, may be dynamic (for instance, a bicycle’s stability issues may not

permit static safe states when cycling). From there, it can resume progress toward its goals. The

representation of such recovery is simplified by further extension that allows the direct setting

of place markings in the Petri net. The utility of this recovery mechanism was demonstrated by

another RoboCup behavior in §4.3.

Finally, in Chapter 5, I summarized the implementation and final results of this work.

This architecture is more capable than the relevant baselines, besting each in representational

ability or in analyzability. Also, it has been demonstrated with a set of example behaviors in the

RoboCup domain. All this serves to display the value of my architecture.

6.1. FUTURE WORK 82

6.1 Future Work

Unsurprisingly, this thesis has not taken this work to all possible logical conclusions. Here

are some interesting future directions.

6.1.1 Reasoning and Planning

Reasoning about the world is a difficult problem, and many attempts have been made

at it. Logical reasoning [64] and probabilistic inference [59] are among the most successful of

these, and they can explain much of the reasoning humans do. However, they do not completely

explain how humans reason. In particular, they are not very good at explaining how we understand

complex events and activities. Because we encounter such complexities so often, it is critical to be

able to reason about them. Since the action representation discussed here is designed for describing

complex activities, it should have good application to this.

One method is particularly interesting. It is based on an idea that human understanding

and reasoning work via mental simulation [25, 18]. Somehow, we imagine the situation playing out

in front of us, or we “put ourselves in someone’s shoes,” and by picturing how the world evolves,

we can draw inferences and make predictions. It is easy to see how that could be applied to this

model. After all, we can imagine a situation (by setting up the state of the model to match that

of the situation) and then simulate that model forward. We can move the Petri net forward in

the usual way, and we can move the Bayes net forward by either sampling or by keeping a more

complex distribution model, such as a set of the most likely states.

Similarly, planning can be done by considering the effects of forward simulation. We can

see what outcomes are likely if we try various actions, and base our choice of those actions on the

predicted results. Also, experience might teach us which actions are worth investigating, allowing

us to spend our planning time more effectively.

6.1.2 Learning

Throughout this dissertation, I have almost entirely presumed that behaviors in this

representation are either human-designed or are given to us fully complete from some mysterious

source. However, it is an intriguing problem to consider how they might be learned. There are

already learning methods for many of the pieces. For instance, a dynamic Bayes net model of the

environment may be learned [59, 29]. Furthermore, it is possible to learn finite state machines to

navigate well through a partially observable Markov decision process [55], though it is unclear how

to extend this work to learning Petri nets. There are techniques for learning Petri nets from state

6.1. FUTURE WORK 83

graphs [22, 13], so it might be possible to tighten a learned FSM into a Petri net, but it is unclear

how to directly learn a Petri net to solve a POMDP.

Hierarchical planning [52, 73, 74, 16] and reinforcement learning [49, 71, 50, 35, 36], as

discussed in §1.2, are also good candidates for learning useful behaviors. After all, a behavior in the

representation described here may be seen as a compiled policy or set of plans. Based on relevant

observations, the agent uses its policy or chooses which plan to use. It can do so at every level of

the hierarchy, so if a behavioral module corresponds to a plan, then having a hierarchy of behaviors

is similar to having a planning hierarchy. It does not matter precisely how the hierarchical policy

or plans are found, just that the plans at each level are broken down into successively finer plans

below. I suspect this sort of behavioral learning would be a very interesting possible research

direction.

Another direction for tackling this learning problem would be from the angle of observing

other actions. Just as reinforcement learning can accomplish amazing things by observing an

already-trained agent [1], these behaviors might be usefully learned by seeing the structure of

another agent’s actions. Here, techniques on learning Petri nets from observed states might be

highly applicable [22, 13]. Or, we could view this problem in the other direction. Supposing

another agent is learning to perform a task by observing our actions; how, then, can we make it

easy for them to determine our behavior’s structure?

6.1.3 Improved Inference Flexibility

As mentioned in §2.3.2, there are other inference methods beyond the exact ones like

variable elimination and the Junction Tree algorithm. For instance, particle filtering is one such

method that uses sampling to allow a more detailed tradeoff between inference accuracy and time.

There are other such methods, such as “anytime algorithms,” which can stop inference early and

still get a useful approximate answer [48, 53]. Adding such inference tools to this architecture

would make it more flexible.

6.1.4 Language

This work was motivated in part by a desire to ground language and thought in real

actions in a complex environment. However, despite its success in handling actions in the world, I

have not connected it to any sort of linguistic ability. It might be highly enlightening to relate this

architecture to linguistics, perhaps by connecting it to the semantics of FrameNet [27]. It might

be similarly interesting to use these properly grounded actions for metaphorical reasoning, as was

6.2. CONCLUSION 84

done in [60].

This architecture could also be useful for more complex linguistic problems. It is not

uncommon for linguistic communication to be interrupted; indeed, speakers will often interrupt

themselves with side issues and temporary concerns. The methods described here may provide

leverage at dealing with concurrency and interruption even in linguistic acts.

6.1.5 Modeling Internal State of Another Agent

One common problem in multi-agent settings is that in order to make useful predictions

or plans, it is necessary to consider one’s partners and opponents. As this architecture is designed

for describing behaviors, it could also describe the behaviors of an agent other than oneself. This

gives rise to a set of other questions. How can we determine the structure of someone else’s actions?

Given a structure, how might we estimate the current internal state of another agent? How can we

manipulate another agent’s state to obtain a benefit, mutual or individual? How might we conceal

our own internal state while still accomplishing our goals? These problems become trickier also

because we have to guess at the other agent’s inputs.

6.2 Conclusion

My thesis describes a full framework for complex actions, including both an action-

production-centric representation and a set of algorithms to analyze the effects such behaviors.

Rather than focusing on a single behavior, I have attempted to capture commonalities from across

the space of human activity. Giving computers access to these fundamental aspects of the way hu-

mans deal with the world is, I believe, a crucial step toward creating agents as capable as humans

at interacting with, and understanding, the world.

85

Bibliography

[1] Pieter Abbeel. Apprenticeship Learning and Reinforcement Learning with Application to

Robotic Control. PhD thesis, Stanford University, August 2008.

[2] Philip E. Agre and David Chapman. Pengi: An implementation of a theory of activity. In

Proceedings of AAAI-87, pages 268–272, 1987.

[3] Alan Agresti and Brent A. Coull. Approximate is better than ”exact” for interval estimation

of binomial proportions. The American Statistician, 52, 1998.

[4] Alberto Amengual. A computational model of attachment secure responses in the strange

situation. Technical Report TR-09-002, International Computer Science Institute, March

2009.

[5] Corin R. Anderson, Pedro Domingos, and Daniel Weld. Relational Markov models and their

application to adaptive web navigation. In Proceedings KDD-2002, 2002.

[6] Adam M. Johansen Arnaud Doucet. A tutorial on particle filtering and smoothing: Fifteen

years later. In D. Crisan and B. Rozovsky, editors, Handbook of Nonlinear Filtering. Oxford

University Press, 2009.

[7] Leon Barrett and Srini Narayanan. Learning all optimal policies with multiple criteria. In

ICML, July 2008.

[8] Pere Bonet, Catalina M. Lladó, Ramon Puijaner, and William J. Knottenbelt. Platform

independent Petri net editor. http://pipe2.sourceforge.net/.

[9] Pere Bonet, Catalina M. Lladó, Ramon Puijaner, and William J. Knottenbelt. PIPE v2.5: A

Petri net tool for performance modelling. In Proceedings of the 23rd Latin American Confer-

ence on Informatics (CLEI 2007), San Jose, Costa Rica, October 2007.

http://pipe2.sourceforge.net/

BIBLIOGRAPHY 86

[10] Taylor L. Booth. Sequential Machines and Automata Theory. John Wiley and Sons, Inc.,

New York, first edition, 1967.

[11] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal Of Robotics

And Automation, RA-2:14–23, April 1986.

[12] Rodney Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

[13] Nadia Busi and G. Michele Pinna. Synthesis of nets with inhibitor arcs. In International

Conference on Concurrency Theory, pages 151–165, 1997.

[14] Mao Chen, Ehsan Foroughi, Fredrik Heintz, ZhanXiang Huang, Spiros Kapetanakis, Kostas

Kostiadis, Johan Kummeneje, Itsuki Noda, Oliver Obst, Pat Riley, Timo Steffens, Yi Wang,

and Xiang Yin. RoboCup soccer server users manual, August 2002.

[15] Wai-Ki Ching and Michael K. Ng. Markov Chains: Models, Algorithms and Applications.

Springer, New York, 2006.

[16] Bradley J. Clement, Edmund H. Durfee, and Anthony C. Barrett. Abstract reasoning for

planning and coordination. Journal of Artificial Intelligence Research, 28:453–515, 2007.

[17] René David and Hassane Alla. On hybrid Petri nets. Discrete Event Dynamic Systems,

11(1-2):9–40, 2001.

[18] Martin Davies and Tony Stone. Folk Psychology and Mental Simulation. Number 43 in Royal

Institute of Philosophy Supplements. Cambridge University Press, 1998.

[19] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic inference.

In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning. The

MIT Press, 2007.

[20] Rodrigo de Salvo Braz, Sriraam Natarajan, Hung Bui, Jude Shavlik, and Stuart Russell.

Anytime lifted belief propagation. In Workshop on Statistical Relational Learning, 2009.

[21] Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. Uncer-

tainty in Artificial Intelligence, pages 211–219, 1996.

[22] Jorg Desel and Wolfgang Reisig. The synthesis problem of Petri nets. In STACS 93, pages

120–129, 1993.

BIBLIOGRAPHY 87

[23] Jörg Desel and Wolfgang Reisig. Place/transition Petri Nets, volume 1491/1998 of Lecture

Notes in Computer Science, pages 122–173. Springer Berlin / Heidelberg, 1998.

[24] Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors. Sequential Monte Carlo Methods

in Practice. Springer-Verlag, 2001.

[25] Jerome A. Feldman. From Molecule to Metaphor: A Neural Theory of Language. The MIT

Press, Cambridge, Massachusetts, 2006.

[26] Richard Fikes and Nils Nilsson. STRIPS: a new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[27] Charles J. Fillmore and Collin F. Baker. Frame semantics for text understanding. In Proceed-

ings of WordNet and Other Lexical Resources Workshop, NAACL, Pittsburgh, June 2001.

[28] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational

models. In Proceedings of the 16th International Joint Conference on Artificial Intelligence

(IJCAI), pages 1300–1307, Stockholm, Sweden, August 1999.

[29] Song Gao, Qinkun Xiao, Quan Pan, and Qingguo Li. Learning Dynamic Bayesian Networks

Structure Based on Bayesian Optimization Algorithm, volume 4492/2007. Springer Berlin /

Heidelberg, 2007.

[30] Simon J. Godsill, Arnaud Doucet, and Mike West. Monte Carlo smoothing for nonlinear time

series. Journal of the American Statistical Association, 99(465):156–168, March 2004.

[31] Peter J. Haas. Stochastic Petri Nets. Springer Series in Operations Research and Financial

Engineering. Springer, 2002.

[32] Eric A. Hansen. Solving POMDPs by searching in policy space. In Proceedings of the Four-

teenth International Conference on Uncertainty In Artificial Intelligence (UAI-98), pages 211–

219, 1998.

[33] Michael A. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill, New

York, 1965.

[34] M. Hauskrecht. Planning and Control in Stochastic Domains with Imperfect Information.

PhD thesis, MIT, Cambridge, MA, 1997.

[35] Bernhard Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In ICML,

pages 243–250, 2002.

BIBLIOGRAPHY 88

[36] Bernhard Hengst. Partial Order Hierarchical Reinforcement Learning, volume 5360/2008 of

Lecture Notes in Computer Science, pages 138–149. Springer Berlin / Heidelberg, 2008.

[37] William H. Hsu. Bayesian network tools in java. http://bnj.sourceforge.net/.

[38] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide. Inter-

national Journal of Approximate Reasoning, 15(3):225–263, October 1996.

[39] Nick James and Wolfgang Wagner. ATAN. http://atan1.sourceforge.net/.

[40] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An

introduction to variational methods for graphical models. Machine Learning, 37(2):183–233,

November 1999.

[41] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 4:237–285, 1996.

[42] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting

in partially observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[43] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi, Eiichi Osawa,

Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCup synthetic agent challenge.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI97), San

Francisco, CA, 1997. Morgan Kaufmann.

[44] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi, Eiichi Osawa,

Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The RoboCup synthetic agent challenge,

1997. In International Joint Conference on Artificial Intelligence (IJCAI97), 1997.

[45] Daphne Koller and Avi Pfeffer. Object-oriented Bayesian networks. In Proceedings of the 13th

Annual Conference on Uncertainty in AI (UAI), pages 302–313, Providence, Rhode Island,

August 1997.

[46] Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In Proceedings of AAAI,

1998.

[47] Steffen L. Lauritzen and David David J. Spiegelhalter. Local computations with probabilities

on graphical structures and their application to expert systems. Journal of the Royal Statistical

Society, 50(2):157–224, 1988.

http://bnj.sourceforge.net/
http://atan1.sourceforge.net/

BIBLIOGRAPHY 89

[48] Chao-Lin Liu and Michael P. Wellman. On state-space abstraction for anytime evaluation of

Bayesian networks. SIGART Bulletin, 7(2):50–57, 1996.

[49] Bhaskara Marthi. Concurrent Hierarchical Reinforcement Learning. PhD thesis, UC Berkeley,

2006.

[50] Bhaskara Marthi, Lelsie Kaelbling, and Tomas Lozano-Perez. Learning hierarchical structure

in policies. In NIPS 2007 Workshop on Hierarchical Organization of Behavior, 2007.

[51] Bhaskara Marthi, Stuart Russell, and Jason Wolfe. Angelic Semantics for High-Level Actions.

In ICAPS, 2007.

[52] Bhaskara Marthi, Stuart Russell, and Jason Wolfe. Angelic hierarchical planning: Optimal

and online algorithms. In Proceedings of ICAPS, 2008.

[53] Robert Mateescu, Rina Dechter, and Kalev Kask. Tree approximation for belief updating. In

Eighteenth national conference on Artificial intelligence (AAAI-02), pages 553–559, 2002.

[54] Nicolas Meuleau, Kee-Eung Kim, Leslie Kaelbling, and Anthony Cassandra. Solving POMDPs

by searching the space of finite policies. In Proceedings of the Conf. on Uncertainty in AI,

1999.

[55] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Kaelbling. Learning finite-state

controllers for partially observable environments. In Proceedings of the Conf. on Uncertainty

in AI, 1999.

[56] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey

Kolobov. BLOG: Probabilistic models with unknown objects. In Proceedings of the 19th

International Joint Conference on Artificial Intelligence (IJCAI), pages 1352–1359, 2005.

[57] Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kael-

bling. Lifted probabilistic inference with counting formulas. In Proceedings of the 23rd AAAI

Conference on Artificial Intelligence, pages 1062–1068, 2008.

[58] Tadao Murata. Petri nets: Properties, analysis, and applications. Proceedings of the IEEE,

77(4), April 1989.

[59] Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD

thesis, UC Berkeley, Computer Science Division, July 2002.

BIBLIOGRAPHY 90

[60] Srini Narayanan. KARMA: Knowledge-based Action Representations for Metaphor and As-

pect. PhD thesis, UC Berkeley, Berkeley, CA, 1997.

[61] Srini Narayanan. Reasoning about actions in narrative understanding. In Proceedings of

the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan

Kaufmann Press, 1999.

[62] Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In

Proceedings of the 7th Conference of the Cognitive Science Society, pages 329–334. University

of California, Irvine, CA, 1985.

[63] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut fur Instrumentelle

Mathematik, 1962.

[64] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

Englewood Cliffs, New Jersey, 2 edition, 2003.

[65] Sumit Sanghai, Pedro Domingos, and Daniel Weld. Dynamic probabilistic relational models.

In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence,

pages 992–997, Acapulco, Mexico, 2003.

[66] Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer Sci-

ence+Business Media, New York, NY, 1999.

[67] Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer Verlag, 1999.

[68] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, Cambridge, Massachusetts, 1998.

[69] Fengzhan Tian and Yuchang Lu. A DBN inference algorithm using junction tree. In Pro-

ceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China,

June 2004.

[70] Jiacun Wang. Timed Petri Nets: Theory and Application. Kluwer Academic Publishers,

Norwell, Massachusetts, 1998.

[71] Shimon Whiteson and Peter Stone. Concurrent layered learning. In Proceedings of the Second

International Joint Conference on Autonomous Agents and Multi-Agent Systems, Melbourne,

Australia, July 2003.

BIBLIOGRAPHY 91

[72] Edwin Bidwell Wilson. Probable inference, the law of succession, and statistical inference.

Journal of the American Statistical Association, 22:209–212, 1927.

[73] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Combined task and motion planning for

mobile manipulation. In Proceedings of ICAPS, 2010.

[74] Qiang Yang. Formalizing planning knowledge for hierarchical planning. Computational Intel-

ligence, 6(1):12–24, 1990.

[75] Nevin Lianwen Zhang and David Poole. Exploiting causal independence in Bayesian network

inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

92

Appendix A

Hand-Wrought Analysis

To show how hand-analysis is used to guarantee the success of a behavior, we will now

see its use on an example behavior, designed to operate on the RoboCup soccer environment.

Consider a robotic soccer task, where a robot must go to a stationary soccer ball. In particular,

the environment, precisely as described by the RoboCup Soccer Simulator [44], is as follows:

1. The environment operates in discrete time steps.

2. The environment is described by six variables:

• x and y, the agent’s position

• s, the agent’s speed

• ρ, the direction in which the agent is facing and moving

• x∗ and y∗, the position of the ball.

3. These also permit us to compute two auxiliary variables:

• d, the Euclidean distance to the ball.

• θ, the direction to the ball relative to the agent’s orientation.

4. The goal is to reduce the distance to the ball below a threshold. Therefore, we also define

the error metric to be d, and the goal will be reached only when d < εd.

5. The agent may influence the environment with two inputs:

• a, an acceleration that changes only the agent’s speed s, bounded in the range [amin, amax]

with amax > 0 > amin.

93

agent facing

Figure A.1: A simple version of the soccer environment

• ω, a rotation that changes only the agent’s orientation θ, in the range [−θmax, θmax],

with θmax > 0.

Only one of these inputs may be applied in any time step. That is, ∀t(at = 0) ∨ (ωt = 0).

6. The environment is updated according to:

ρt+1 = ρt + ωt+1(1 + ξω)

st+1 = γst + at+1(1 + ξa)

xt+1 = xt + st+1(cos(ρt+1) + ξx)

yt+1 = yt + st+1(sin(ρt+1) + ξy)

Here, the environment injects random errors, labeled ξ∗ (where ∗ is any of the above vari-

ables), that are distributed uniformly in the ranges [−δ∗, δ∗], except that ξx and ξy are in the

range [− 1√
2
δs,

1√
2
δs].

7. The agent receives the following observations:

θ̂t = θt + ξ̂θ

ŝt = st(1 + ξ̂s)

d̂t = dt(1 + ξ̂d)

Again, the environment injects random errors into the observations, labeled ξ̂∗ (where ∗ could

be any of the above variables), which are distributed uniformly within the ranges [−δ̂∗, δ̂∗].

We may summarize this environment by ignoring x, y, x∗, and y∗, resulting in a 3-variable

description consisting of d, s, and θ, as shown in Figure A.1. (After all, these are the only variables

about which the agent receives input.) It is difficult to write equations for the updates of these

variables, but it is possible to find bounds on these variables, and that is what we require.

A.1. PROVING BOUNDS: BEHAVIOR 94

begin done

rotation
step

rotate

accel.
step

accelerate

ωt+1 = −θ̂t

at+1 =
1− γ

(1 + δs)(1 + δa)

(
1

1 + δ̂d
d̂t −

1

1− δ̂s
γ

1− γ
(1 + δs)ŝt

)

Figure A.2: “Slow”: A behavior to close with a stationary ball.

A.1 Proving Bounds: Behavior

In order to analyze a behavior, we must have a behavior to analyze. Consider the behavior

shown in Figure 3.1. We will analyze the sub-component “Slow” shown in Figure A.2.

A.2 Proving Bounds: Bounds

The goal, again, is to reduce d below εd, so the natural error metric is simply d. However,

because there is a momentum factor γ and limited ranges of inputs, there are times when it is

inevitable that d increases. For instance, if the agent is moving quickly away (θt = π, ωmin > −π
2 ,

ωmax <
π
2 , and γst > −amin), then it cannot turn or slow sufficiently to reverse course, so dt+1 > dt.

To avoid this sort of increase in error, we will first define a set of bounds on environmental state

that we can maintain and that guarantee an improvement in d.

Now, because our agent can only affect one of its angle or its speed, we must actually

A.3. PROVING BOUNDS: LEMMAS 95

|θt| ≤ εa,θ

dt − (1 + δs)
γ

1− γ
st ≥ 0

st ≥ εa,s

Figure A.3: Bounds in the acceleration

case, ωt+1 = 0

|θt| ≤ εω,θ

dt − (1 + δs)
γ

1− γ
st ≥ 0

st ≥ εω,s

Figure A.4: Bounds in the rotation

case, at+1 = 0

define two sets of bounds. In one case, the agent will accelerate, so we must guarantee that it will

not need to adjust the angle; that is, ωt+1 = 0. Then, we need tight bounds on θ, but we can

tolerate looser bounds on s. Specifically, we will have the bounds described in Figure A.3.

In the other case, the turning case, the agent will turn but not accelerate, so at+1 = 0.

Then, we need tight bounds on s, but we need not be so restrictive of θ. (That is, εa,θ ≤ εω,θ, and

εa,s ≤ εω,s.) All the required bounds are given in Figure A.4.

So, given that the agent starts in one of these cases in any time step, we must show

that it ends within the bounds of one of these cases, too. The easiest way to do that is to show

alternation: that if at time step t the agent is in the acceleration case, then in time t+ 1 it meets

the bounds for the turning case; and vice versa. Another way to say that is that the postconditions

for the acceleration case match the preconditions for the rotation case (and vice versa). In that

way, we can guarantee that the agent never violates these bounds. (Of course, given this guarantee,

when the agent is actually working in the environment, it will often find that it meets both sets of

bounds. In that case, it can choose whichever action most reduces the error; since it satisfies the

current preconditions of both cases, the action will leave it within the postconditions of one of the

cases.)

During the detailed analysis below, we will find certain restrictions on the environment

and bounds required to make the analysis hold true. (As with all proofs, there may be looser

bounds that also allow this analysis and would be revealed by a more clever inspection of the

problem.) The conditions used in this analysis are shown in Figure A.5.

A.3 Proving Bounds: Lemmas

First, let us show some useful facts that will make later analysis easier. The easiest are

bounds on the agent’s outputs. For instance, we know that

A.3. PROVING BOUNDS: LEMMAS 96

1− (1− γ)
1 + δs
1 + δs

≥ 0

π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(εa,θ + δs) ≤ εω,θ

π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(εω,θδω + δ̂θ(1 + δω) + δs) ≤ εa,θ

γεω,s ≥ εa,s

1− 1− δa
1 + δa

1 + δ̂s

1− δ̂s
≥ 0

γ

(
1− 1− δa

1 + δa

1 + δ̂s

1− δ̂s

)
εa,s + (1− δa)

1− γ
(1 + δs)(1 + δa)

1− δ̂d
1 + δ̂d

εd ≥ εω,s

1− γ − cos(εω,θ + δs) ≤ 0

Figure A.5: Restrictions on the environment for this analysis to hold

Also,

at+1 =
1− γ

(1 + δs)(1 + δa)

(
1

1 + δ̂d
d̂t −

1

1− δ̂s
γ

1− γ
(1 + δs)ŝt

)
≤ 1− γ

(1 + δs)(1 + δa)

(
1 + δ̂d

1 + δ̂d
dt −

1− δ̂s
1− δ̂s

γ

1− γ
(1 + δs)st

)

=
1− γ

(1 + δs)(1 + δa)

(
dt −

γ

1− γ
(1 + δs)st

)
Similarly,

at+1 ≥ 1− γ
(1 + δs)(1 + δa)

(
1− δ̂d
1 + δ̂d

dt −
1 + δ̂s

1− δ̂s
γ

1− γ
(1 + δs)st

)
To help define some variables, a diagram of the relevant angles and distances used in

this analysis is given in Figure A.6. Notably, ωt+1 is the agent’s rotation, ηt+1 is the amount

of divergence caused by random errors, and φt+1 is the full resulting angle between the ball and

the agent’s direction of movement. Similarly, zt+1 is the distance the agent actually moves in the

(t+ 1)st step.

Let us begin by bounding some of these quantities at time t+ 1. We know that the agent

has a speed of st+1 = γst + at+1(1 + ξa), and it moves that amount plus some error in both the x

and y directions. Well, if we have error in both x and y of at most 1√
2
st+1δs, then the maximum

error in distance we could have is if the agent went as far as possible in both, so

(1− δs)st+1 ≤ zt+1 ≤ (1 + δs)st+1.

A.3. PROVING BOUNDS: LEMMAS 97

Figure A.6: The angles and distances used in the example analysis.

More precisely,

zt+1 ≤ (1 + δs)st+1

≤ (1 + δs)(γst + (1 + δa)at+1)

≤ (1 + δs)
(
γst + (1 + δa)

(
1− γ

(1 + δs)(1 + δa)

(
dt −

γ

1− γ
(1 + δs)st

)))
The st terms cancel, as do most of the multipliers of dt, so

zt+1 ≤ (1− γ)dt

Similarly, φt+1 = θt + ωt+1 + ηt+1. But ηt+1 comes from two sources: first, the agent’s

angle might be adjusted by the error in executing its turn, giving a term of ξωωt+1. Second, the

agent might move in a different direction because some error is added to both x and y when it

moves; it could go as far as δsst+1 in a different direction, but the agent would still go at least

(1 − δs)st+1 in the right direction. This gives an angular error term of δs. In that case, recalling

the bounds on ξω,

θt + (1− δω)ωt+1 −
δs

1− δs
≤ φt+1 ≤ θt + (1 + δω)ωt+1 +

δs
1− δs

Although it is not immediately clear why we would want to bound dt
dt+1

, it will become

useful later, so we do it now. By the triangle rule, dt ≤ dt+1 + zt+1. But we have upper-bounded

zt+1 ≤ (1 + δs)(γst + at+1(1 + δa)),

A.4. PROVING BOUNDS: θ 98

so

dt+1 ≥ dt − zt+1 ≥ dt − (1 + δs)(γst + at+1(1 + δa)).

But we have an upper bound on at+1, so

dt+1 ≥ dt − (1 + δs)(γst +
1− γ

(1 + δs)(1 + δa)

(
dt −

γ

1− γ
(1 + δs)st

)
(1 + δa))

=
(

1− (1 + δs)
(1− γ)(1 + δa)
(1 + δs)(1 + δa)

)
dt

−(1 + δs)(γ +
1− γ

(1 + δs)(1 + δa)

(
− γ

1− γ
(1 + δs)

)
(1 + δa))st

=
(

1− (1 + δs)
1− γ
1 + δs

)
dt − (1 + δs)(0)st

=
(

1− (1− γ)
1 + δs
1 + δs

)
dt

If this multiplier is at least 0 (we add this condition to our restrictions on the environment), then

dt
dt+1

≤
(

1− (1− γ)
1 + δs
1 + δs

)−1

A.4 Proving Bounds: θ

Having derived some inequalities that will later be helpful, let us now show that |θt+1| ≤
εω,θ given that the agent is turning (i.e. a = 0, ω 6= 0) and the starting conditions for this case.

First, we show that θt+1 is acute. By the cosine rule,

d2
t = d2

t+1 + z2
t+1 − 2dt+1zt+1 cos(π − θt+1)

d2
t+1 = z2

t+1 + d2
t − 2zt+1dt cos(φt+1)

so

2dt+1zt+1 cos(π − θt+1) = 2z2
t+1 − 2zt+1dt cos(φt+1)

dt+1 cos(π − θt+1) = zt+1 − dt cos(φt+1)

≤ (1− γ)dt − dt cos(φt+1)

= (1− γ − cos(φt+1))dt

A.4. PROVING BOUNDS: θ 99

And since dt is non-negative, if that parenthesized term is less than 0, then π− θt+1 is obtuse and

θt+1 is acute. We can also upper-bound φ ≤ θt+(1−δω)ωt+1 +δs, which we combine with θt ≤ εω,θ
(the looser of the two bounds on θt+1) and ωt+1 ≤ 0, so that term will certainly be positive if

1− γ − cos(εω,θ + δs) ≤ 0

Therefore, we include this term in the requirements on the environment.

Now that we know that θt+1 is acute, we can use that to establish tighter bounds. Well,

by using the sine rule on the triangle shown in Figure A.6,

sin(π − θt+1) = sin(θt+1) =
sin(φt+1)dt

dt+1

But since 0 ≤ θt+1 ≤ π
2 , then we can lower-bound sin(θt+1) by sin(θt+1) ≥ 2

πθt+1. Similarly, if

φ ≥ 0, we can upper-bound sin(φt+1) ≤ φt+1. Then,

2
π
θt+1 ≤

φt+1dt
dt+1

But we can upper-bound dt
dt+1

, so

θt+1 ≤
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

φt+1

and recall our bound of φt+1 ≤ θt + ωt+1(1 + δω) + δs to get

θt+1 ≤
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(θt + ωt+1(1 + δω) + δs)

And ωt+1 can take one of two values. If the agent is accelerating in this time step, then ωt+1 = 0,

and we know a bound on θt and have already obtained an upper bound on θt+1, so

θt+1 ≤
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(εa,θ + δs)

Then our bound is satisfied if the following condition holds, so we include it in our list of environ-

mental restrictions.
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(εa,θ + δs) ≤ εω,θ

Now, consider the rotational case. Recall that our agent rotates with ωt+1 = −θ̂t, cor-

recting the angular divergence it detects. Then the right-hand side of the inequality becomes

π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(θt − (θt + ξ̂θ)(1 + δω) + δs)

=
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(−θtδω − ξ̂θ(1 + δω) + δs)

A.5. PROVING BOUNDS: D AND S 100

But of course we really do not care about the sign of the error, so we can simply upper-bound

the error with the absolute value of the terms. Furthermore, the observation error can be upper-

bounded, so

θt+1 ≤
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(θtδω + δ̂θ(1 + δω) + δs)

And of course we started out with an upper bound on θt, so

θt+1 ≤
π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(εω,θδω + δ̂θ(1 + δω) + δs)

So in order for our final conditions θt+1 ≤ εa,θ to hold, we only need that this right-hand quantity

be less than εa,θ:

π

2

(
1− (1− γ)

1 + δs
1 + δs

)−1

(εω,θδω + δ̂θ(1 + δω) + δs) ≤ εa,θ

Note that this equation, though messy, includes no environment state variables, only

parameters describing the environment. Thus, it describes a set of environments for which this

behavior will maintain this particular bound. As long as our agent operates in one of those

environments, its behavior will work appropriately.

A.5 Proving Bounds: d and s

We want to show that at the end of each time step, the agent does not overshoot. That

is, we require

dt − (1 + δs)
γ

1− γ
st ≡ q ≥ 0

Here, I label the left-hand quantity q for simplicity in the rest of the analysis. But of course

the agent cannot have traveled more than (1 + δs)st+1 in this time step, so we can lower-bound

dt+1 ≥ dt − (1 + δs)st+1, giving us

q ≥ dt − (1 + δs)st+1 −
γ

1− γ
(1 + δs)st+1

= dt −
(

1 +
γ

1− γ

)
(1 + δs)st+1

= dt −
1

1− γ
(1 + δs)st+1

Also, we can upper-bound st+1 ≤ γst + (1 + δa)at+1, so

q ≥ dt −
1

1− γ
(1 + δs)(γst + (1 + δa)at+1)

=
(
dt −

γ

1− γ
(1 + δs)st

)
− (1 + δs)(1 + δa)

1− γ
at+1

A.6. PROVING BOUNDS: S 101

We started this time step with a bound that the left parenthesized term is at least 0, and in the

rotational case we also have that at+1 = 0, so

q ≥ 0.

It is very easy to apply similar logic to arrive at a similar conclusion for the acceleration

case, where

at+1 ≤ 1− γ
(1 + δs)(1 + δa)

(
dt −

γ

1− γ
(1 + δs)st

)
Then, recalling that

q ≥
(
dt −

γ

1− γ
(1 + δs)st

)
− (1 + δs)(1 + δa)

1− γ
at+1

≥
(
dt −

γ

1− γ
(1 + δs)st

)
− (1 + δs)(1 + δa)

1− γ
1− γ

(1 + δs)(1 + δa)

(
dt −

γ

1− γ
(1 + δs)st

)
= 0

so the desired bound is satisfied for both the rotational and the acceleration cases.

A.6 Proving Bounds: s

Now that we have proven that the agent stays correctly-oriented and never overshoots its

target, we need only show that it maintains a sufficient speed to converge to its goal. Fortunately,

this is not difficult.

In the rotational case, we have that at+1 = 0, so st+1 = γst. We want st+1 ≥ εa,s but

know that st ≥ εω,s, so all we need is that

γεω,s ≥ εa,s

A.7. PROVING BOUNDS: CONVERGENCE 102

In the acceleration case, if at+1 6= 0, we know that

st+1 ≥ γst + (1− δa)at+1

= γst + (1− δa)
1− γ

(1 + δs)(1 + δa)

(
1

1 + δ̂d
d̂t −

1

1− δ̂s
γ

1− γ
(1 + δs)ŝt

)
≥ γst + (1− δa)

1− γ
(1 + δs)(1 + δa)

(
1− δ̂d
1 + δ̂d

dt −
1 + δ̂s

1− δ̂s
γ

1− γ
(1 + δs)st

)

=

(
γ − (1− δa)

1− γ
(1 + δs)(1 + δa)

1 + δ̂s

1− δ̂s
γ

1− γ
(1 + δs)

)
st

+(1− δa)
1− γ

(1 + δs)(1 + δa)
1− δ̂d
1 + δ̂d

dt

= γ

(
1− 1− δa

1 + δa

1 + δ̂s

1− δ̂s

)
st

+(1− δa)
1− γ

(1 + δs)(1 + δa)
1− δ̂d
1 + δ̂d

dt

We know that st ≥ εa,s and dt ≥ εd (because otherwise the agent would already have reached its

goal). In that case, the two following conditions guarantee that the agent will satisfy our bounds.

(The first condition is to make sure we can use our lower bound on st.)(
1− 1− δa

1 + δa

1 + δ̂s

1− δ̂s

)
≥ 0

γ

(
1− 1− δa

1 + δa

1 + δ̂s

1− δ̂s

)
εa,s + (1− δa)

1− γ
(1 + δs)(1 + δa)

1− δ̂d
1 + δ̂d

εd ≥ εω,s

A.7 Proving Bounds: Convergence

Now, with all those bounds, let us show that this behavior actually leads to reaching the

goal. We will do that by showing that d is reduced in each time step.

By the cosine rule,

d2
t = d2

t+1 + z2
t+1 − 2dt+1zt+1 cos(π − θt+1)

z2
t+1 = d2

t + d2
t+1 − 2dtdt+1 cos(θt+1 − φt+1)

We combine those to get

dt+1 = dt cos(θt+1 − φt+1) + zt+1 cos(π − θt+1)

A.8. PROVING BOUNDS: CONCLUSION 103

But we can upper-bound the left cosine by 1, and rewrite the right one, so

dt+1 ≤ dt − cos(θt+1)zt+1

≤ dt − cos(θt+1)(1 + δs)st+1

≤ dt − cos(εω,θ)(1 + δs)εa,s

That is, in each time step, the agent improves its error d by at least cos(εω,θ)(1 + δs)εa,s, so it will

converge in a finite amount of time. Therefore, this behavior is guaranteed to be successful.

A.8 Proving Bounds: Conclusion

This entire derivation has been more hassle than anyone could have hoped. All the same,

I would like to underline the fact that this proves behavioral correctness for a whole range of

environmental conditions. In particular, with the RoboCup Soccer Simulator default parameters,

these bounds hold.

	Introduction
	Representation Components
	Bayes Nets
	Petri Nets
	Combination

	Background
	Coordinated Probabilistic Relational Models
	Example Domain: RoboCup
	Simulator Detail

	What to Expect in this Document

	Representation of Action
	Conceptualization
	Procedural Behavior
	Petri Nets
	Time
	Control
	Input and Output
	Continuous Quantities and Mathematical Transformations
	Modules
	Demonstration: a RoboCup Behavior

	Inferential Reasoning
	Bayesian Networks
	Bayesian Inference
	Temporal Inference
	Objects
	Demonstration: A RoboCup Goalie

	Review

	Analysis and Proofs
	Analyzing Higher-Level Behaviors
	Markov Model Analysis
	Complexity and Subdivision
	Bounded Markov Process Analysis
	Discrete Inference State

	Sampling Analysis
	Backward Sampling

	Hand-Wrought Analysis

	Recovering from Surprises and Interruptions
	Machinery
	Modules
	Examples
	Passing the Ball
	Advancing down the Field
	Keeping Watch on the Ball

	Results
	Implementation
	Demonstration
	Baseline Comparisons
	Finite State Machine Baseline
	Bayesian Network Baseline
	Concurrent Turing-Complete Language Baseline

	Conclusion
	Future Work
	Reasoning and Planning
	Learning
	Improved Inference Flexibility
	Language
	Modeling Internal State of Another Agent

	Conclusion

	Bibliography
	Hand-Wrought Analysis
	Proving Bounds: Behavior
	Proving Bounds: Bounds
	Proving Bounds: Lemmas
	Proving Bounds: theta
	Proving Bounds: d and s
	Proving Bounds: s
	Proving Bounds: Convergence
	Proving Bounds: Conclusion

