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Abstract

We modify the PCFG language model by introducing a mix-
ture over grammars. We then investigate the performance of
such a mixture and analyze what information is gained by
its introduction. We examine two different types of parsers
and find optimal parameters (number of grammars, training
iterations, etc.) for our language model.

1 Introduction

In the area of natural language processing, one attempts to
allow computers to harvest information from human lan-
guage. Humans are very good at this, while historically,
computers have performed very poorly. In order to extract
meaning from an utterance or piece of text, it may be useful
to know how that text is structured grammatically. For in-
stance, the it may be helpful to identify the main verb of the
sentence. This extraction of grammar from words is called
parsing.

Probabilistic Context Free Grammars (PCFGs) have
proven very useful in the area of natural-language pars-
ing. Both lexicalized [2, 3] and unlexicalized [6] parsers
can produce impressive results. In this paper, we enrich the
PCFG language model by removing the assumption that all
language is generated from a single grammar. Instead, we
assume that each sentence comes from a grammar chosen
from a mixture of grammars. Using a mixture of estima-
tors instead of a single estimator was first suggested in the
statistics literature [7] and has since been adopted in ma-
chine learning since [5].

The general idea is that not all language has the same
grammar. Clearly, speech usually comes from a different
grammar than written text; it would be rare for someone to
speak in the same manner as they would write a research
paper. Within text, too, grammars often change, such as
a paper’s abstract being written differently than the body
of the paper. Furthermore, grammar switches may come
quite rapidly; consider the case of quoting other text. Even
a single individual may generate language while switching
grammars. Our model works by constructing several pos-

sible grammars and attempting to parse text with each of
them.

The paper is structured as follows: After a brief back-
ground review in the next section, a detailed presentation
of our method is given in section three. In section four we
show our empirical results for the various experiments we
ran. We conclude in section five and give an outlook into
future work in section six.

2 Background

Lexicalized parsing, in which words influence the resulting
structure by means other than just their parts of speech, gen-
erally outperforms unlexicalized parsing. However, accord-
ing to [6], unlexicalized parsing has several advantages. In
particular, the grammar is simpler and more compact, and it
is easier to understand its inner workings. Therefore, while
investigating this new mixture of grammars technique, we
implement our grammar mixing on top of a simple unlexi-
calized parser.

In order to remove some of the well understood imper-
fections of a raw unlexicalized PCFG read from training
trees, Klein et al. [6] add parent annotations and remove
sibling annotations from their rules. They call this tech-
nique vertical and horizontal markovization. The approach
is based on the observation that most categories are ex-
panded in different ways depending on their position within
the sentence. For example, a NP in subject position is 8.7
times more likely than an object NP to expand into a single
pronoun. This external context can be captured by adding
parent information to the category. The second imperfec-
tion of a raw PCFG is that many of the complicated and
specific rules have been seen only once or not at all during
training. By binarizing the grammar and removing sibling
annotation, one is able to soften this sparsity problem.

3 Method

There are two components to our method: The language
model consisting of a mixture of PCFGs and the parsers
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Figure 1: A model of a simple mixture of grammars

that we use to parse according to our language model. Both
will be introduced in this section.

3.1 Language Model

We enrich the PCFG language model by removing the as-
sumption that all language is generated from the same gram-
mar. Instead, we assume that each sentence comes from a
grammar chosen from a mixture of grammars. This is visi-
ble in the model in Fig. 3.1.

We train our parser via the EM algorithm [4]. First, we
assign each training sentence a particular mixture of gram-
mars. Then, we iteratively:

• Train each grammar, weighting the value of each sen-
tence by the probability the sentence came from that
grammar.

• Update the probability of each sentence coming from
each grammar.

We want each of our grammars to be able to parse the
same sentences. Therefore we require that all sentences
have a fractional assignment of at least 10−6 to each gram-
mar.

3.2 Parser Types

An interesting question is how to use the different grammars
when trying to parse a previously unseen sentence. In our
experiments we used two closely related parsing models,
which we refer to as sum parser and max parser, for reasons
that will become apparent very soon. While there are many
ways to make use of the different grammars in parsing, we
hope that the two we chose are easy enough to understand
and sophisticated enough in order to produce high quality
results.

3.2.1 The Sum Parser

Both our parser are modified versions of the Cocke-Kasami-
Younger parser [8]. The “sum” parser computes the most
likely sentence structure for all grammars. The CKY parser
uses a chart where information about incomplete parses,

called edges is stored. Each edge contains information
about a possible structure covering a certain span and the
probability associated with this structure. In each step the
most likely structure is taken from a priority queue of edges
called the agenda, and all possible derivation rules from the
grammar are applied in order to produce new edges with
easy-to-compute probabilities.

Since the different grammars contain the same rules (but
with different probabilities), it is easy to modify the stan-
dard CKY parser so that it parses with several grammars.
To do so we add an array of probabilities to each edge. In
this array, we store the likelihood of the edge dependent on
the different grammars. The total likelihood is just the sum

(hence the name) of all these likelihoods and is used as the
priority for the agenda. The first edge of type S taken off the
agenda that spans over the whole sentence will therefore be
the most likely sentence structure for all grammars:

P (w1n|G1, G2, ...GK) ∝
K∑

k=1

P (Gk) · P (w1n|Gk)

where w1n denotes the sentence (words 1 through n) and the
Gk are the different grammars. This can be derived quite
simply using standard probabilistic rules.

P (w1n) =
∑

k

P (w1n, Gk) =
∑

k

P (w1n|Gk)P (Gk)

3.2.2 The Max Parser

The idea behind the “max” parser is to rely only on the
grammar that produces the sentence structure with the high-
est likelihood. The max parser differs from the sum parser
in the way that the agenda priority is computed. As one
could have guessed, the maximum of the different likeli-
hoods is used instead of the sum:

P (w1n|G1, G2, ...GK) ∝ max
k=1..K

P (Gk) · P (w1n|Gk)

This has some of the same advantages as the Viterbi al-
gorithm. Essentially, there are some sentences which are
not likely in any particular grammar, but which can be gen-
erated by any of several grammars. Thus, we would expect
to see them often only if the speaker is changing grammars
frequently. However, it is reasonable to expect that a person
will use a consistent grammar for a period of time, which
means that these sentences are being overvalued by the sum
algorithm. Admittedly, this parser abandons the purity of
our probabilistic model of a mixture of grammars; however,
the hope that it might improve performance makes it worth-
while to examine.
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Figure 2: Log likelihood and accuracy of training data and testing data during training

4 Results

While our method is relatively easy to explain and under-
stand, there are several parameters that need to set in order
to make it work well. Probably the most important question
is: how many grammars are there in the Penn Treebank?
Since we are using an EM-approach we need to decide for
how many iterations to train our model. Additionally it
would be interesting to see whether our model behaves dif-
ferently depending on whether the grammar is annotated or
not. Finally we would like to know whether there is a sig-
nificant difference between the sum and max parser and if
so, which one produces higher accuracies. We will present
results from the experiments and the optimal settings in this
section.

4.1 Experimental Setup

We use the same setup that has been used by previous work
in order to facilitate comparison. Our training set consists
of sections 2 to 21 of the WSJ section of the Penn Tree-
bank. We used the first 20 files (393 sentences) of section
22 as a validation set that was used for tuning the param-
eters of our models. We tested our model on the first 20
files (158 sentences) of section 23. (This is a noticeably
smaller test set than most previous work has used; in partic-

ular, [6] used the entirety of section 23 as a test set. How-
ever, we found ourselves restricted in the amount of com-
putation time available to us.) The training trees were an-
notated or transformed in some way and then (unsmoothed)
maximum-likelihood estimates were used for rule probabil-
ities. For the tagging probabilities we used add-one smooth-
ing which was applied to unknown words and words that
were seen 10 times or less during training. Parsing was
done with a simple array-based Java implementation of a
generalized CKY parser.

To evaluate parsers, we use the F1 score of their parses.
Two standard measures of accuracy are the precision and re-
call. The precision is the proportion of tags in the computer-
parsed structure (the “guessed parse”) that match the tags in
the human-generated parse (the “gold standard”). The recall
is the proportion of tags in the gold standard which appear
in the guessed parse. So, there is often a trade-off; one can
improve the precision of a parser at the expense of its recall,
and vice versa. As a result, we use the F1 score, which is
the geometric mean of the precision and recall.

F1 =
√

PR
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Figure 3: Log likelihood and accuracy of training data and
validation data during training

4.2 Training

We trained our mixture of grammars in the standard way for
a probabilistic model; we used the Expectation Maximiza-
tion (EM) algorithm. Although it is usually used to learn
parameters to give the best accuracy, the EM algorithm ac-
tually promises only one thing. It always attempts to in-
crease the likelihood of the training data. In general, one
hopes that because log likelihood tends to correlate with ac-
curacy, this maximum corresponds to the most accurate set
of parameters. In practice, the EM algorithm first increases
the accuracy (fitting), but then decreases it (overfitting).

In Fig. 2, we trained our model for many iterations and
plotted the log likelihood of the training data along with that
of the testing data. As expected, the log likelihood of the
testing data increased at first, but then fell off sharply as we
began to overtrain. What was surprising was the speed with
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Figure 4: The accuracy changes surprisingly much with ad-
ditional training, though the log likelihood seems to indicate
convergence

which this happened; we expected that our model could take
hundreds of iterations to converge to a good solution, while
in fact this happened in less than ten iterations.

We were also curious how log likelihood matched up
with accuracy. As it turns out, the accuracy begins to dip
even before the log likelihood of the testing data peaks does.
In Fig. 3, one can see that the accuracy fluctuates fairly ran-
domly, but it clearly falls off as overfitting begins.

In a nutshell, EM works because increasing the likeli-
hood of some correct data should decrease the likelihood of
incorrect data, since there is only a fixed amount of prob-
ability to spread among all possible parse trees. Because
the log likelihood on the testing data does not correlate
well with the parser’s accuracy, we conclude that while the
parser is correctly eliminating some incorrect parses, it must
also be increasing the accuracy of some of the bad parses.
This means that the parser must be learning something that
only indirectly indicates a correct parse.

4.2.1 Accuracy fluctuation

As we train our mixture of grammars, its accuracy fluctu-
ates dramatically–as much as 1% every iteration! However,
the log likelihood of the correct parse trees changes very
smoothly. Furthermore, the log likelihood of the training
data converges quite swiftly. (See Fig. 4.) How can these
facts be reconciled?
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Annotation Parser 1g 2g 3g 5g 10g
without max 77.07 77.33 77.22 77.03 76.97
annotation ±0.17 ±0.30 ±0.32 ±0.66

sum 77.40 77.32 77.28 77.40
±0.47 ±0.48 ±0.17 ±0.75

with max 80.76 80.86 80.61 80.90 80.33
annotation ±0.12 ±0.35 ±0.17 ±0.70

sum 81.12 81.05 81.00 80.79
±0.24 ±0.21 ±0.27 ±0.45

Table 1: Overview of average F1-score and standard de-
viation of the F1-score (for 4 runs) on the test set for the
different configurations depending on the number of gram-
mars.

The most reasonable explanation is that there are many
trees with similar likelihood but with very different ac-
curacy. As the mixture of grammars trains, and the rule
probabilities change slightly, the most likely parse changes
quickly, resulting in random fluctuations in the F1 score.
This leads us to believe that the mixture of grammars is not
“homing in” on a language model as well as we would like.
If it were, then one parse (hopefully the correct one) would
become noticeably more probable than any other. The mix-
ture of grammars is not even focusing in on a bad language
model, because that would lead to one parse, of poor but
consistent accuracy, dominating. Instead, many parse trees
remain nearly equally probable.

4.3 Number of Grammars

In order to determine the optimal number of grammars we
ran our algorithm with different settings and computed the
accuracy of the obtained parsers on the test set. For each set
of parameters we trained the parser four times (each time
with a slightly different initialization). We are showing the
the average F1-score and it’s standard deviation in table 4.3.
Several phenomena can be observed:

• As expected, annotating the grammar always increases
the accuracy, independent of the other parameters.

• The difference between the sum parser, which returns
the most likely sentence structure for all grammars,
and the max parser, which returns the structure that
had the highest likelihood for a single grammar, is very
small. But, for every single setting, the sum parser
scores slightly higher.

• The F1-score stays almost constant when the number
of grammars is varied, but one can also see that there it
has a tendency to decrease when the number of gram-
mars is increased.

It should be noted that not only the F1-scores are very
similar, but in fact most of the produced parse trees are ex-

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0  1  2  3  4  5  6  7  8  9  10

P
er

ce
nt

Grammar

Prior
Usage

Figure 5: Grammar prior versus actual usage

actly the same even with different number of grammars.
This is somewhat surprising since we expected different
numbers of grammars to capture different aspects of lan-
guage.

4.4 Grammar Priors

When we calculate the probability of generating a sentence,
we consider both the probability of the sentence given each
grammar and the probability of choosing that grammar.
That is, we also use the prior over the grammars. Since
the max parser presumes that a sentence is generated from
exactly one grammar, one interesting question is how well
the prior matches the grammar’s frequency of use.

It turns out that grammars are not used in particularly
close approximation to their priors. There is some corre-
lation, but it is not very strong, as can be seen in Fig. 5.
One possible reason is grammar drift. We evaluate on data
which chronologically follows the training data from the
Wall-Street Journal portion of the Penn Treebank. As a re-
sult, the test data may have a different subject matter, or
even use slightly different grammar, than the training data.

However, the other, less appealing possibility is that the
mixture of grammars is simply learning something partic-
ular to the training data alone. That is, the mixture is
overtrained and simply does not learn any generalizing fea-
tures. Given the performance of this language model, we
are forced to conclude that this is most likely case the case.

5 Conclusions

In the end, we had some rather unexpected results. The
accuracy and log likelihood on the validation set peaked af-
ter an astonishingly low number of training iterations. We
anticipated several hundred training iterations to be needed,
but we found that eight or nine iterations were optimal. Fur-
thermore, this number was independent of the number of
grammars in the mixture.
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In addition, we found that training with different num-
bers of grammars produced identical parse trees. This is
surprising because theoretically more grammars would cap-
ture a more detailed model.

Finally, the accuracy of the model seems to fluctuate
even as the log likelihood converges. This is also an indica-
tor that log likelihood and parsing accuracy are not closely
related.

Unfortunately we have to conclude that no general im-
provement of statistical significance could be observed after
the introduction of our language model. However, if we cut
off the training at the right point, the model performs com-
parably to the unlexicalized single grammar parser. This
leads us to the conclusion that the mixture of grammars is
learning something that is unrelated to parsing accuracy.

6 Future Work

Although we could not significantly increase the accuracy
of parsing, we still believe that the introduction of a mixture
of PCFGs could be beneficial. There are several directions
of future work that seem worthwile pursuing:

A relatively simple extension to our current model would
be the introduction of an additional common grammar. In
this case, there would be a shared grammar and many spe-
cific grammars. Then, productions would be chosen based
not only on its probability within the specific grammar, but
on the sum of this with the probability of the production
within the shared grammar. The gain here is that the result-
ing language model could still model the variation in the
training data, but without being so tightly focused on these
variations.

Our mixture of PCFGs model is very restrictive on the
way that the different grammars can be combined; in fact,
they cannot be combined at all. A way to break this in-
flexibility would be a Latent Dirichlet Allocation (LDA)
type of model [1], in which each constituent can be gen-
erated by a different grammar. The advantage of this ap-
proach is that now grammar shifts can be dealt with on a
much finer grain. Instead of changing grammars only on
sentence boundaries, now the model could accommodate
such things as in-sentence quotations and constructs with
differing grammars, such as idiomatic phrases. In the LDA
setting, the grammar for each constituent is chosen indepen-
dently from the parent grammar. However, in our context,
we would expect it to be better to draw the new grammar de-
pending on the parent grammar and thereby enforce fewer
grammar changes.

It is also possible that our model is already sufficient to
capture some variation in grammar, but that the data we are
looking at does not have enough variation to justify the use
of several grammars. Applying our parser to a different cor-
pus (e.g. the Brown corpus, where the data is drawn from

five different genres) could show the superiority of the mix-
ture of PCFGs method to the basic PCFG approach.
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